Skip to main content

Advertisement

Log in

The expression of O-linked glycosyltransferase GALNT7 in breast cancer is dependent on estrogen-, progesterone-, and HER2-receptor status, with prognostic implications

  • Research
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

GALNT7 is a glycosyltransferase enzyme transferring N-acetylgalactosamine to initiate O-linked glycosylation in the Golgi apparatus. Breast cancer is the most common cancer in women globally. Estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2; ERBB2) are important biomarkers in the prognosis and molecular subtyping of breast cancer. Here, we showed that ER-positive, PR-positive or HER2-positive breast tumors have higher expression of GALNT7 compared to ER-negative, PR-negative or HER2-negative breast tumors, respectively. We found that CpG-aggregated methylation of GALNT7 gene is decreased, and in parallel, its transcript levels are increased in breast cancer compared to healthy breast tissue. We observed that the difference in the expression of GALNT7 between negative and positive status of the receptors is the highest for HER2, followed by ER and PR, pointing that HER2 might be relatively more influential than ER and PR on the expression of GALNT7 in breast cancer. We reported that basal-like breast tumors have decreased expression of GALNT7 compared to non-basal-like tumors, and that high GALNT7 expression is associated with favorable relapse-free and distant metastasis-free survival in HER2 status-dependent manner in breast cancer patients. Moreover, we showed that GALNT7 expression in breast cancer is cell type- (epithelial vs stromal cells), tumor grade- and ethnicity-dependent. Combined, we propose that GALNT7 might contribute to different clinical outcomes depending on the receptor status in breast cancer, and that a better understanding of GALNT7 and its function in the context of breast cancer is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data used in the current study is publicly available.

References

  1. Chen, C.J., Chen, T.H., Lei, J., Liang, J.A., Yang, P.S., Huang, C.S., Hsieh, C.M., Tseng, L.M., Liu, L.C., Cheng, S.H., Shih, K.H.: Correlation of ER, PR, and HER2 at the protein and mRNA levels in Asian patients with operable breast cancer. Biosci. Rep. 42(1), BSR20211706 (2022). https://doi.org/10.1042/BSR20211706. PMID: 35006257; PMCID: PMC8766827

  2. Yin, L., Duan, J.J., Bian, X.W., Yu, S.C.: Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 22(1), 61 (2020). https://doi.org/10.1186/s13058-020-01296-5. PMID:32517735;PMCID:PMC7285581

  3. Rosso, C., Voutsadakis, I.A.: Characteristics, clinical differences and outcomes of breast cancer patients with negative or low HER2 expression. Clin. Breast Cancer 22(4), 391–397 (2022). https://doi.org/10.1016/j.clbc.2022.02.008. Epub 2022 Feb 26 PMID: 35337735

  4. Loibl, S., Gianni, L.: HER2-positive breast cancer. Lancet 389(10087), 2415–2429 (2017). https://doi.org/10.1016/S0140-6736(16)32417-5. Epub 2016 Dec 7 PMID: 27939064

  5. Loibl, S., Poortmans, P., Morrow, M., Denkert, C., Curigliano, G.: Breast cancer. Lancet. 397(10286), 1750–1769 (2021). https://doi.org/10.1016/S0140-6736(20)32381-3. Epub 2021 Apr 1. Erratum in: Lancet. 2021 May 8;397(10286):1710. PMID: 33812473.

  6. Hou, Y., Peng, Y., Li, Z.: Update on prognostic and predictive biomarkers of breast cancer. Semin. Diagn. Pathol. 39(5), 322–332 (2022). https://doi.org/10.1053/j.semdp.2022.06.015. Epub 2022 Jun 18 PMID: 35752515

  7. Lamb, C.A., Vanzulli, S.I., Lanari, C.: Hormone receptors in breast cancer: more than estrogen receptors. Medicina (B Aires) 79(Spec 6/1):540–545 (2019). English. PMID: 31864223

  8. Varki, A., Kornfeld, S.: Historical Background and Overview. In: th Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., et al. (eds.) Essentials of Glycobiology, pp. 1–20. Cold Spring Harbor (NY) (2022)

  9. Varki, A., Gagneux, P.: Biological Functions of Glycans. In: rd Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., et al. (eds.) Essentials of Glycobiology, pp. 77–88. Cold Spring Harbor (NY) (2015)

    Google Scholar 

  10. Chin-Hun Kuo, J., Gandhi, J.G., Zia, R.N., Paszek, M.J.: Physical biology of the cancer cell glycocalyx. Nat. Phys. 14, 658–669 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Paszek, M.J., DuFort, C.C., Rossier, O., Bainer, R., Mouw, J.K., Godula, K., et al.: The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511, 319–325 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Buffone, A., Weaver, V.M.: Don’t sugarcoat it: How glycocalyx composition influences cancer progression. J. Cell Biol. 219, e201910070 (2020)

    Article  PubMed  Google Scholar 

  13. Gupta, R., Leon, F., Rauth, S., Batra, S.K., Ponnusamy, M.P.: A systematic review on the implications of O-linked glycan branching and truncating enzymes on cancer progression and metastasis. Cells 9(2), 446 (2020). https://doi.org/10.3390/cells9020446. PMID: 32075174; PMCID: PMC7072808

  14. Mereiter, S., Balmaña, M., Campos, D., Gomes, J., Reis, C.A.: Glycosylation in the Era of Cancer-Targeted Therapy: Where Are We Heading? Cancer Cell 36(1), 6–16 (2019). https://doi.org/10.1016/j.ccell.2019.06.006. PMID: 31287993

    Article  PubMed  CAS  Google Scholar 

  15. Peixoto, A., Relvas-Santos, M., Azevedo, R., Santos, L.L., Ferreira, J.A.: Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks. Front. Oncol. 9, 380 (2019). https://doi.org/10.3389/fonc.2019.00380. PMID: 31157165; PMCID: PMC6530332

    Article  PubMed  PubMed Central  Google Scholar 

  16. Scott, D.A., Drake, R.R.: Glycosylation and its implications in breast cancer. Expert Rev. Proteomics. 16(8), 665–680 (2019). https://doi.org/10.1080/14789450.2019.1645604. Epub 2019 Jul 25. PMID: 31314995; PMCID: PMC6702063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. May C, Ji S, Syed ZA, Revoredo L, Paul Daniel EJ, Gerken TA, Tabak LA, Samara NL, Ten Hagen KG. Differential splicing of the lectin domain of an O-glycosyltransferase modulates both peptide and glycopeptide preferences. J Biol Chem. 2020;295(35):12525–12536. https://doi.org/10.1074/jbc.RA120.014700. Epub 2020 Jul 15. PMID: 32669364; PMCID: PMC7458804.

  18. Brockhausen, I., Wandall, H.H., Hagen, K.G.T., et al.: O-GalNAc Glycans. In: Varki, A., Cummings, R.D., Esko, J.D., et al. (eds.) Essentials of Glycobiology, 4th edn., pp. 100–110. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY) (2022). Chapter 10. https://www.ncbi.nlm.nih.gov/books/NBK579921/https://doi.org/10.1101/glycobiology.4e.10

  19. Kaur, S., Kumar, S., Momi, N., Sasson, A.R., Batra, S.K.: Mucins in pancreatic cancer and its microenvironment. Nat. Rev. Gastroenterol. Hepatol. 10(10), 607–20 (2013). https://doi.org/10.1038/nrgastro.2013.120. Epub 2013 Jul 16. PMID: 23856888; PMCID: PMC3934431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Abbott, K.L., Nairn, A.V., Hall, E.M., Horton, M.B., McDonald, J.F., Moremen, K.W., Dinulescu, D.M., Pierce, M.: Focused glycomic analysis of the N-linked glycan biosynthetic pathway in ovarian cancer. Proteomics 8(16), 3210–3220 (2008). https://doi.org/10.1002/pmic.200800157.PMID:18690643;PMCID:PMC3970323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bennett, E.P., Mandel, U., Clausen, H., Gerken, T.A., Fritz, T.A., Tabak, L.A.: Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 22(6), 736–56 (2012). https://doi.org/10.1093/glycob/cwr182. Epub 2011 Dec 18. PMID: 22183981; PMCID: PMC3409716

    Article  PubMed  CAS  Google Scholar 

  22. Marcos, N.T., Pinho, S., Grandela, C., Cruz, A., Samyn-Petit, B., Harduin-Lepers, A., Almeida, R., Silva, F., Morais, V., Costa, J., Kihlberg, J., Clausen, H., Reis, C.A.: Role of the human ST6GalNAc-I and ST6GalNAc-II in the synthesis of the cancer-associated sialyl-Tn antigen. Cancer Res. 64(19), 7050–7057 (2004). https://doi.org/10.1158/0008-5472.CAN-04-1921. PMID: 15466199

    Article  PubMed  CAS  Google Scholar 

  23. Nguyen, A.T., Chia, J., Ros, M., Hui, K.M., Saltel, F., Bard, F.: Organelle specific O-glycosylation drives MMP14 activation, tumor growth, and metastasis. Cancer Cell 32(5), 639-653.e6 (2017). https://doi.org/10.1016/j.ccell.2017.10.001. PMID: 29136507

  24. Wang, Y., Ju, T., Ding, X., Xia, B., Wang, W., Xia, L., He, M., Cummings, R.D.: Cosmc is an essential chaperone for correct protein O-glycosylation. Proc. Natl. Acad. Sci. USA. 107(20), 9228–33 (2010). https://doi.org/10.1073/pnas.0914004107. Epub 2010 May 3. PMID: 20439703; PMCID: PMC2889116

    Article  PubMed  PubMed Central  Google Scholar 

  25. Itkonen, H.M., Minner, S., Guldvik, I.J., Sandmann, M.J., Tsourlakis, M.C., Berge, V., Svindland, A., Schlomm, T., Mills, I.G.: O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res. 73(16), 5277–5287 (2013). https://doi.org/10.1158/0008-5472.CAN-13-0549. Epub 2013 May 29 PMID: 23720054

    Article  PubMed  CAS  Google Scholar 

  26. Lucena, M.C., Carvalho-Cruz, P., Donadio, J.L., Oliveira, I.A., de Queiroz, R.M., Marinho-Carvalho, M.M., Sola-Penna, M., de Paula, I.F., Gondim, K.C., McComb, M.E., Costello, C.E., Whelan, S.A., Todeschini, A.R., Dias, W.B.: Epithelial mesenchymal transition induces aberrant glycosylation through hexosamine biosynthetic pathway activation. J. Biol. Chem. 291(25), 12917–29 (2016). https://doi.org/10.1074/jbc.M116.729236. Epub 2016 Apr 18. PMID: 27129262; PMCID: PMC4933211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lau, K.S., Partridge, E.A., Grigorian, A., Silvescu, C.I., Reinhold, V.N., Demetriou, M., Dennis, J.W.: Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1), 123–134 (2007). https://doi.org/10.1016/j.cell.2007.01.049. PMID: 17418791

    Article  PubMed  CAS  Google Scholar 

  28. Pinho, S.S., Reis, C.A.: Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15(9), 540–555 (2015). https://doi.org/10.1038/nrc3982. Epub 2015 Aug 20 PMID: 26289314

    Article  PubMed  CAS  Google Scholar 

  29. RodrÍguez, E., Schetters, S.T.T., van Kooyk, Y.: The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat. Rev. Immunol. 18(3), 204–211 (2018). https://doi.org/10.1038/nri.2018.3. Epub 2018 Feb 5 PMID: 29398707

    Article  PubMed  CAS  Google Scholar 

  30. Bagdonaite, I., Pallesen, E.M., Ye, Z., Vakhrushev, S.Y., Marinova, I.N., Nielsen, M.I., Kramer, S.H., Pedersen, S.F., Joshi, H.J., Bennett, E.P., Dabelsteen, S., Wandall, H.H.: O-glycan initiation directs distinct biological pathways and controls epithelial differentiation. EMBO Rep. 21(6), e48885 (2020). https://doi.org/10.15252/embr.201948885. Epub 2020 Apr 23. PMID: 32329196; PMCID: PMC7271655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Raghu, D., Mobley, R.J., Shendy, N.A.M., Perry, C.H., Abell, A.N.: GALNT3 Maintains the epithelial state in trophoblast stem cells. Cell Rep. 26(13), 3684-3697.e7 (2019). https://doi.org/10.1016/j.celrep.2019.02.093. PMID: 30917321; PMCID: PMC6501849

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Burchell, J.M., Beatson, R., Graham, R., Taylor-Papadimitriou, J., Tajadura-Ortega, V.: O-linked mucin-type glycosylation in breast cancer. Biochem. Soc. Trans. 46(4), 779–788 (2018). https://doi.org/10.1042/BST20170483. Epub 2018 Jun 14. PMID: 29903935; PMCID: PMC6103458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yang, R., Zhang, H., Ma, Y., Gong, S., Niu, J., Ma, J., Zhong, A.: The role of ppGalNAc-T family in breast cancer development and progression. Indian J. Cancer 52(Suppl 3), E144–E147 (2015). https://doi.org/10.4103/0019-509X.186556. PMID: 27453411

    Article  PubMed  Google Scholar 

  34. Bennett, E.P., Mandel, U., Clausen, H., Gerken, T.A., Fritz, T.A., Tabak, L.A.: Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology 22, 736–756 (2012)

    Article  PubMed  CAS  Google Scholar 

  35. de Las, R.M., Lira-Navarrete, E., Gerken, T.A., Hurtado-Guerrero, R.: Polypeptide GalNAc-Ts: from redundancy to specificity. Curr. Opin. Struct. Biol. 56, 87–96 (2019)

    Article  Google Scholar 

  36. Revoredo, L., Wang, S., Bennett, E.P., Clausen, H., Moremen, K.W., Jarvis, D.L., Ten Hagen, K.G., Tabak, L.A., Gerken, T.A.: Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family. Glycobiol. 26(4), 360–76 (2016). https://doi.org/10.1093/glycob/cwv108. Epub 2015 Nov 26. PMID: 26610890; PMCID: PMC4767052

    Article  CAS  Google Scholar 

  37. Perrine, C.L., Ganguli, A., Wu, P., Bertozzi, C.R., Fritz, T.A., Raman, J., Tabak, L.A., Gerken, T.A.: Glycopeptide-preferring polypeptide GalNAc transferase 10 (ppGalNAc T10), involved in mucin-type O-glycosylation, has a unique GalNAc-O-Ser/Thr-binding site in its catalytic domain not found in ppGalNAc T1 or T2. J. Biol. Chem. 284(30), 20387–97 (2009). https://doi.org/10.1074/jbc.M109.017236. Epub 2009 May 21. PMID: 19460755; PMCID: PMC2740463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gerken, T.A., Jamison, O., Perrine, C.L., Collette, J.C., Moinova, H., Ravi, L., Markowitz, S.D., Shen, W., Patel, H., Tabak, L.A.: Emerging paradigms for the initiation of mucin-type protein O-glycosylation by the polypeptide GalNAc transferase family of glycosyltransferases. J. Biol. Chem. 286(16), 14493–507 (2011). https://doi.org/10.1074/jbc.M111.218701. Epub 2011 Feb 24. PMID: 21349845; PMCID: PMC3077648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Mockl, L., Pedram, K., Roy, A.R., Krishnan, V., Gustavsson, A.K., Dorigo, O., et al.: Quantitative Super-Resolution Microscopy of the Mammalian Glycocalyx. Dev. Cell 50, 57-72.e6 (2019)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Scott, E., Hodgson, K., Calle, B., Turner, H., Cheung, K., Bermudez, A., Marques, F.J.G., Pye, H., Yo, E.C., Islam, K., Oo, H.Z., McClurg, U.L., Wilson, L., Thomas, H., Frame, F.M., Orozco-Moreno, M., Bastian, K., Arredondo, H.M., Roustan, C., Gray, M.A., Kelly, L., Tolson, A., Mellor, E., Hysenaj, G., Goode, E.A., Garnham, R., Duxfield, A., Heavey, S., Stopka-Farooqui, U., Haider, A., Freeman, A., Singh, S., Johnston, E.W., Punwani, S., Knight, B., McCullagh, P., McGrath, J., Crundwell, M., Harries, L., Bogdan, D., Westaby, D., Fowler, G., Flohr, P., Yuan, W., Sharp, A., de Bono, J., Maitland, N.J., Wisnovsky, S., Bertozzi, C.R., Heer, R., Guerrero, R.H., Daugaard, M., Leivo, J., Whitaker, H., Pitteri, S., Wang, N., Elliott, D.J., Schumann, B., Munkley, J.: Upregulation of GALNT7 in prostate cancer modifies O-glycosylation and promotes tumour growth. Oncogene. 42(12), 926–937 (2023). https://doi.org/10.1038/s41388-023-02604-x. Epub 2023 Feb 1. PMID: 36725887; PMCID: PMC10020086

  41. Hua, S., Li, H., Liu, Y., Zhang, J., Cheng, Y., Dai, C.: High expression of GALNT7 promotes invasion and proliferation of glioma cells. Oncol Lett. 16(5), 6307–6314 (2018). https://doi.org/10.3892/ol.2018.9498. Epub 2018 Sep 25. PMID: 30405766; PMCID: PMC6202485

  42. Gao, F., Han, J., Jia, L., He, J., Wang, Y., Chen, M., Liu, X., He, X.: MiR-30c facilitates natural killer cell cytotoxicity to lung cancer through targeting GALNT7. Genes Genomics. 45(2), 247–260 (2023). https://doi.org/10.1007/s13258-022-01306-0. Epub 2022 Aug 30 PMID: 36040682

  43. Zhang, Y., Peng, C., Li, J., Zhang, D., Zhang, C., Jin, K., Ji, D., Peng, W., Tang, J., Feng, Y., Sun, Y.: Long non-coding RNA CCDC144NL-AS1 promotes cell proliferation by regulating the miR-363-3p/GALNT7 axis in colorectal cancer. J. Cancer 13(3), 752–763 (2022). https://doi.org/10.7150/jca.65885. PMID: 35154444; PMCID: PMC8824904

  44. Wang, Y., Wang, C., Fu, Z., Zhang, S., Chen, J.: miR-30b-5p inhibits proliferation, invasion, and migration of papillary thyroid cancer by targeting GALNT7 via the EGFR/PI3K/AKT pathway. Cancer Cell Int. 21(1), 618 (2021). https://doi.org/10.1186/s12935-021-02323-x. PMID: 34819077; PMCID: PMC8611849

  45. Wang, J.B., Chen, X.L., Han, Z.B., Wang, H.W., Wang, Z.H., Li, N.N., Lin, Z.G.: Long non-coding RNA TP73-AS1 contributes to glioma tumorigenesis by sponging the miR-103a/GALNT7 pathway. Brain Res. 1741, 146886 (2020). https://doi.org/10.1016/j.brainres.2020.146886. Epub 2020 May 19 PMID: 32416102

    Article  PubMed  CAS  Google Scholar 

  46. Vojta, A., Samaržija, I., Bočkor, L., Zoldoš, V.: Glyco-genes change expression in cancer through aberrant methylation. Biochim. Biophys. Acta 1860(8), 1776–1785 (2016). https://doi.org/10.1016/j.bbagen.2016.01.002. Epub 2016 Jan 12 PMID: 26794090

    Article  PubMed  CAS  Google Scholar 

  47. Rahman, M., Jackson, L.K., Johnson, W.E., Li, D.Y., Bild, A.H., Piccolo, S.R.: Alternative preprocessing of RNA-Sequencing data in The Cancer Genome Atlas leads to improved analysis results. Bioinformatics 31(22), 3666–3672 (2015). https://doi.org/10.1093/bioinformatics/btv377. Epub 2015 Jul 24. PMID: 26209429; PMCID: PMC4804769

  48. Julien, S., Ivetic, A., Grigoriadis, A., QiZe, D., Burford, B., Sproviero, D., Picco, G., Gillett, C., Papp, S.L., Schaffer, L., Tutt, A., Taylor-Papadimitriou, J., Pinder, S.E., Burchell, J.M.: Selectin ligand sialyl-Lewis x antigen drives metastasis of hormone-dependent breast cancers. Cancer Res. 71(24), 7683–7693 (2011). https://doi.org/10.1158/0008-5472.CAN-11-1139. Epub 2011 Oct 24. PMID: 22025563; PMCID: PMC6485480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yang, L., Wu, X., Wang, Y., Zhang, K., Wu, J., Yuan, Y.C., Deng, X., Chen, L., Kim, C.C., Lau, S., Somlo, G., Yen, Y.: FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene 30(43), 4437–4446 (2011). https://doi.org/10.1038/onc.2011.145. Epub 2011 May 2 PMID: 21532620

    Article  PubMed  CAS  Google Scholar 

  50. Richardson, A.L., Wang, Z.C., De Nicolo, A., Lu, X., Brown, M., Miron, A., Liao, X., Iglehart, J.D., Livingston, D.M., Ganesan, S.: X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9(2), 121–132 (2006). https://doi.org/10.1016/j.ccr.2006.01.013. PMID: 16473279

    Article  PubMed  CAS  Google Scholar 

  51. Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A, Salmena L, Sampieri K, Haveman WJ, Brogi E, Richardson AL, Zhang J, Pandolfi PP. Subtle variations in Pten dose determine cancer susceptibility. Nat Genet. 2010;42(5):454–8. https://doi.org/10.1038/ng.556. Epub 2010 Apr 18. PMID: 20400965; PMCID: PMC3118559.

  52. Farmer, P., Bonnefoi, H., Becette, V., Tubiana-Hulin, M., Fumoleau, P., Larsimont, D., Macgrogan, G., Bergh, J., Cameron, D., Goldstein, D., Duss, S., Nicoulaz, A.L., Brisken, C., Fiche, M., Delorenzi, M., Iggo, R.: Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24(29), 4660–4671 (2005). https://doi.org/10.1038/sj.onc.1208561. PMID: 15897907

    Article  PubMed  CAS  Google Scholar 

  53. Casey, T., Bond, J., Tighe, S., Hunter, T., Lintault, L., Patel, O., Eneman, J., Crocker, A., White, J., Tessitore, J., Stanley, M., Harlow, S., Weaver, D., Muss, H., Plaut, K.: Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res. Treat. 114(1), 47–62 (2009). https://doi.org/10.1007/s10549-008-9982-8. Epub 2008 Mar 29 PMID: 18373191

    Article  PubMed  CAS  Google Scholar 

  54. Liu, J.C., Voisin, V., Bader, G.D., Deng, T., Pusztai, L., Symmans, W.F., Esteva, F.J., Egan, S.E., Zacksenhaus, E.: Seventeen-gene signature from enriched Her2/Neu mammary tumor-initiating cells predicts clinical outcome for human HER2+:ERα- breast cancer. Proc Natl Acad Sci USA 109(15), 5832–5837 (2012). https://doi.org/10.1073/pnas.1201105109. Epub 2012 Mar 28. PMID: 22460789; PMCID: PMC3326451

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kretschmer, C., Sterner-Kock, A., Siedentopf, F., Schoenegg, W., Schlag, P.M., Kemmner, W.: Identification of early molecular markers for breast cancer. Mol. Cancer 10(1), 15 (2011). https://doi.org/10.1186/1476-4598-10-15. PMID: 21314937; PMCID: PMC3045364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kretschmer, C., Conradi, A., Kemmner, W., Sterner-Kock, A.: Latent transforming growth factor binding protein 4 (LTBP4) is downregulated in mouse and human DCIS and mammary carcinomas. Cell Oncol. (Dordr) 34(5), 419–434 (2011). https://doi.org/10.1007/s13402-011-0023-y. Epub 2011 Apr 6. PMID: 21468687; PMCID: PMC3219867

    Article  PubMed  CAS  Google Scholar 

  57. Luciani, M.G., Seok, J., Sayeed, A., Champion, S., Goodson, W.H., Jeffrey, S.S., Xiao, W., Mindrinos, M., Davis, R.W., Dairkee, S.H.: Distinctive responsiveness to stromal signaling accompanies histologic grade programming of cancer cells. PLoS One. 6(5), e20016 (2011). https://doi.org/10.1371/journal.pone.0020016. Epub 2011 May 19. PMID: 21625507; PMCID: PMC3098270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C.L., Serova, N., Davis, S., Soboleva, A.: NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41, 991–995 (2013). https://doi.org/10.1093/nar/gks1193. Epub 2012 Nov 27. PMID: 23193258; PMCID: PMC3531084

    Article  CAS  Google Scholar 

  59. Győrffy, B.: Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. Geroscience (2023). https://doi.org/10.1007/s11357-023-00742-4. Epub ahead of print. PMID: 36856946

  60. Network, Cancer Genome Atlas: Comprehensive molecular portraits of human breast tumours. Nature 490(7418), 61–70 (2012). https://doi.org/10.1038/nature11412. Epub 2012 Sep 23. PMID: 23000897; PMCID: PMC3465532

    Article  CAS  Google Scholar 

  61. Morgan, M., Shepherd, L.: ExperimentHub: Client to access ExperimentHub resources. R package version 2.4.0. (2022)

  62. R Core Team.: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2022). https://www.R-project.org/

  63. Wickham, H., Bryan, J.: readxl: Read Excel Files. R package version 1.4.1. (2022). https://CRAN.R-project.org/package=readxl

  64. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., Yutani, H.: Welcome to the tidyverse. J Open Source Softw 4(43), 1686 (2019). https://doi.org/10.21105/joss.01686

    Article  Google Scholar 

  65. Kassambara, A.: ggpubr: 'ggplot2' Based Publication Ready Plots. R package version 0.5.0. (2022). https://CRAN.R-project.org/package=ggpubr

  66. Morgan, M., Obenchain, V., Hester, J., Pagès, H.: SummarizedExperiment: SummarizedExperiment container. R package version 1.26.1. (2022). https://bioconductor.org/packages/SummarizedExperiment

  67. Ooms, J.: magick: Advanced Graphics and Image-Processing in R. R package version 2.7.3. (2021). https://CRAN.R-project.org/package=magick

  68. Iannone, R., Cheng, J., Schloerke, B., Hughes, E., Seo, J.: gt: Easily Create Presentation-Ready Display Tables. R package version 0.8.0. (2022). https://CRAN.R-project.org/package=gt

  69. Xie, Y.: knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1, 41 (2022)

    Google Scholar 

  70. Allaire JJ., Xie, Y., McPherson, J., Luraschi, J., Ushey K., Atkins A., Wickham H., Cheng, J., Chang, W., Iannone, R.: rmarkdown: Dynamic Documents for R. R package version 2.19. (2022). https://rmarkdown.rstudio.com

  71. Li, Y., Ge, D., Lu, C.: The SMART App: an interactive web application for comprehensive DNA methylation analysis and visualization. Epigenetics Chromatin 12(1), 71 (2019). https://doi.org/10.1186/s13072-019-0316-3. PMID: 31805986; PMCID: PMC6894252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Bagdonaite, I., Pallesen, E.M.H., Nielsen, M.I., Bennett, E.P., Wandall, H.H.: Mucin-Type O-GalNAc Glycosylation in Health and Disease. Adv. Exp. Med. Biol. 1325, 25–60 (2021). https://doi.org/10.1007/978-3-030-70115-4_2. Erratum. In: Adv Exp Med Biol. 2021; 1325: C1-C2 PMID: 34495529

    Article  PubMed  CAS  Google Scholar 

  73. Brockhausen, I., Melamed, J.: Mucins as anti-cancer targets: perspectives of the glycobiologist. Glycoconj. J. 38(4), 459–474 (2021). https://doi.org/10.1007/s10719-021-09986-8. Epub 2021 Mar 11 PMID: 33704667

    Article  PubMed  CAS  Google Scholar 

  74. Berkel, C., Cacan, E.: Analysis of longevity in Chordata identifies species with exceptional longevity among taxa and points to the evolution of longer lifespans. Biogerontology 22(3), 329–343 (2021). https://doi.org/10.1007/s10522-021-09919-w. Epub 2021 Apr 5 PMID: 33818680

    Article  PubMed  CAS  Google Scholar 

  75. Berkel, C., Cacan, E.: Transcriptomic analysis reveals tumor stage- or grade-dependent expression of miRNAs in serous ovarian cancer. Hum. Cell 34(3), 862–877 (2021). https://doi.org/10.1007/s13577-021-00486-3. Epub 2021 Feb 12 PMID: 33576947

    Article  PubMed  CAS  Google Scholar 

  76. Masone, MC.: The role of GALNT7 as a potential diagnostic marker in prostate cancer. Nat. Rev. Urol. (2023). https://doi.org/10.1038/s41585-023-00756-9. Epub ahead of print. PMID: 36918685

  77. Xue, J., Qiang, Yu.: Knockdown of GALNT7 promotes cell apoptosis and autophagy of breast cancer cells by inactivation of STAT3. Eur. J. Gynaecol. Oncol. 43(4), 79–85 (2022)

    Google Scholar 

  78. Milioli, H.H., Tishchenko, I., Riveros, C., Berretta, R., Moscato, P.: Basal-like breast cancer: molecular profiles, clinical features and survival outcomes. BMC Med. Genomics 10(1), 19 (2017). https://doi.org/10.1186/s12920-017-0250-9.PMID:28351365;PMCID:PMC5370447

    Article  PubMed  PubMed Central  Google Scholar 

  79. Banerjee, S., Reis-Filho, J.S., Ashley, S., Steele, D., Ashworth, A., Lakhani, S.R., Smith, I.E.: Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J. Clin. Pathol. 59(7), 729–35 (2006). https://doi.org/10.1136/jcp.2005.033043. Epub 2006 Mar 23. PMID: 16556664; PMCID: PMC1860434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Dunnwald, L.K., Rossing, M.A., Li, C.I.: Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients. Breast Cancer Res. 9(1), R6 (2007). https://doi.org/10.1186/bcr1639. PMID: 17239243; PMCID: PMC1851385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Deng, B., Tarhan, Y.E., Ueda, K., Ren, L., Katagiri, T., Park, J.H., Nakamura, Y.: Critical role of estrogen receptor alpha O-Glycosylation by N-Acetylgalactosaminyltransferase 6 (GALNT6) in Its nuclear localization in breast cancer cells. Neoplasia. 20(10), 1038–1044 (2018). https://doi.org/10.1016/j.neo.2018.08.006. Epub 2018 Sep 9. PMID: 30208353; PMCID: PMC6138801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Niang, B., Jin, L., Chen, X., Guo, X., Zhang, H., Wu, Q., Padhiar, A.A., Xiao, M., Fang, D., Zhang, J.: GalNAc-T4 putatively modulates the estrogen regulatory network through FOXA1 glycosylation in human breast cancer cells. Mol. Cell. Biochem. 411(1–2), 393–402 (2016). https://doi.org/10.1007/s11010-015-2601-1. Epub 2015 Nov 5 PMID: 26541755

    Article  PubMed  CAS  Google Scholar 

  83. Hines, R.B., Johnson, A.M., Lee, E., Erickson, S., Rahman, S.M.M.: Trends in Breast Cancer Survival by Race-Ethnicity in Florida, 1990–2015. Cancer Epidemiol. Biomarkers Prev. 30(7), 1408–1415 (2021). https://doi.org/10.1158/1055-9965.EPI-20-1746. PMID: 34210675

    Article  PubMed  Google Scholar 

  84. Howard, F.M., Olopade, O.I.: Epidemiology of Triple-Negative Breast Cancer: A Review. Cancer J. 27(1), 8–16 (2021). https://doi.org/10.1097/PPO.0000000000000500. PMID: 33475288

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

CB is funded by TUBITAK (The Scientific and Technological Research Council of Turkey) 2211-E and 1001 programs. EC is funded by TUBITAK 1001 program.

Author information

Authors and Affiliations

Authors

Contributions

CB: Conceptualization, Formal analysis, Investigation, Writing – original draft preparation, Visualization. EC: Resources, Writing – review and editing, Funding acquisition, Project administration, Supervision.

Corresponding author

Correspondence to Caglar Berkel.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10719_2023_10137_MOESM1_ESM.pdf

Supplementary Fig. 1 Comparison of the expression of other polypeptide N-acetylgalactosaminyltransferases between non-malignant (normal) breast tissues and breast tumors. Data was obtained from TGCA. ns: p > 0.05; *: p <= 0.05; **: p <= 0.01; ***: p <= 0.001; ****: p<= 0.0001. (PDF 28 KB)

10719_2023_10137_MOESM2_ESM.pdf

Supplementary Fig. 2 The changes in the expression of mucin gene family between breast tumors and normal breast tissue. Data was obtained from TGCA. ns: p > 0.05; *: p <= 0.05; **: p <= 0.01; ***: p <= 0.001; ****: p <= 0.0001. (PDF 32 KB)

10719_2023_10137_MOESM3_ESM.pdf

Supplementary Fig. 3 Protein expression levels of GALNT7 in different cancer types. Data was obtained from Human Protein Atlas (proteinatlas.org). Antibody staining with two different antibodies against GALNT7, namely HPA064243 (bottom) and HPA065317 (top). (PDF 51 KB)

10719_2023_10137_MOESM4_ESM.png

Supplementary Fig. 4 A representative antibody staining image for GALNT7 in breast cancer. The image was obtained from Human Protein Atlas (proteinatlas.org). (PNG 580 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkel, C., Cacan, E. The expression of O-linked glycosyltransferase GALNT7 in breast cancer is dependent on estrogen-, progesterone-, and HER2-receptor status, with prognostic implications. Glycoconj J 40, 631–644 (2023). https://doi.org/10.1007/s10719-023-10137-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10137-4

Keywords

Navigation