Skip to main content
Log in

Photosynthetic characteristics and genetic mapping of a new yellow leaf mutant crm1 in Brassica napus

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Chlorophyll is one of the key factors for photosynthesis and plays an important role in plant growth and development. We previously isolated an EMS mutagenized rapeseed chlorophyll-reduced mutant (crm1), which had yellow leaf, reduced chlorophyll content and fewer thylakoid stacks. Here, we found that crm1 showed attenuated utilization efficiency of both light energy and CO2 but enhanced heat dissipation efficiency and greater tolerance to high-light intensity. BSA-Seq analysis identified a single nucleotide change (C to T) and (G to A) in the third exon of the BnaA01G0094500ZS and BnaC01G0116100ZS, respectively. These two genes encode the magnesium chelatase subunit I 1 (CHLI1) that catalyzes the insertion of magnesium into protoporphyrin IX, a pivotal step in chlorophyll synthesis. The mutation sites resulted in an amino acid substitution P144S and G128E within the AAA+ domain of the CHLI1 protein. Two KASP markers were developed and co-segregated with the yellow leaf phenotype in segregating F2 population. Loss of BnaA01.CHLI1 and BnaC01.CHLI1 by CRISPR/Cas9 gene editing recapitulated the mutant phenotype. BnaA01.CHLI1 and BnaC01.CHLI1 were located in chloroplast and highly expressed in the leaves. Furthermore, RNA-seq analyses revealed the expression of chlorophyll synthesisrelated genes were upregulated in the crm1 mutant. These findings provide a new insight into the regulatory mechanism of chlorophyll synthesis in rapeseed and suggest a novel target for improving the photosynthetic efficiency and tolerance to high-light intensity in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The sequencing data have been deposited in the NCBI database under BioProject PRJNA912866, the SRA accession numbers are: SRR12968239, SRR12968240, SRR12968241, and SRR12968242. The data that support the findings of this study are available in the main text and supporting materials of this article.

References

  • Al-Karadaghi S, Franco R, Hansson M, Shelnutt JA, Isaya G, Ferreira GC (2006) Chelatases: distort to select? Trends Biochem Sci 31(3):135–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombo N, Emanuel C, Lainez V, Maldonado S, Prina AR, Borner T (2008) The barley plastome mutant CL2 affects expression of nuclear and chloroplast housekeeping genes in a cell-age dependent manner. Mol Genet Genomics 279:403–414

    Article  CAS  PubMed  Google Scholar 

  • Dai C, Li Y, Li L, Du Z, Lin S, Tian X, Li S, Yang B, Yao W, Wang J, Guo L, Lu S (2020) An efficient Agrobacterium-mediated transformation method using hypocotyl as explants for Brassica napus. Mol Breeding 40(10):96

    Article  CAS  Google Scholar 

  • Du H, Qi M, Cui X, Cui Y, Yang H, Zhang J, Ma Y, Zhang S, Zhang X, Yu D (2018) Proteomic and functional analysis of soybean chlorophyll-deficient mutant cd1 and the underlying gene encoding the CHLI subunit of Mg-chelatase. Mol Breeding 38:71

    Article  Google Scholar 

  • Gao M, Hu L, Li Y, Weng Y (2016) The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit. Theor Appl Genet 129:1961–1973

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990(1):87–92

    Article  CAS  Google Scholar 

  • Gibson LC, Willows RD, Kannangara CG, Von WD, Hunter CN (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci 92(6):1941–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansson A, Kannangara CG, von Wettstein D, Hansson M (1999) Molecular basis for semidominance of missense mutations in the XANTHA-H (42-kDa) subunit of magnesium chelatase. Proc Natl Acad Sci 96(4):1744–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansson A, Willows RD, Roberts TH, Hansson M (2002) Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Proc Natl Acad Sci 99(21):13944–13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao D, Chao M, Yin Z, Yu D (2012) Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica 186:919–931

    Article  CAS  Google Scholar 

  • Huang YS, Li HM (2009) Arabidopsis CHLI2 can substitute for CHLI1. Plant Physiol 150:636–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikegami A, Yoshimura N, Motohashi K, Takahashi S, Romano P, Hisabori T, Takamiya KI, Masuda T (2007) The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J Biol Chem 282:19282–19291

    Article  CAS  PubMed  Google Scholar 

  • Jensen P, Gibson L, Hunter C (1999) ATPase activity associated with the magnesium-protoporphyrin IX chelatase enzyme of synechocystis PCC6803: evidence for ATP hydrolysis during Mg2+ insertion, and the MgATP-dependent interaction of the ChlI and ChlD subunits. Biochem J 339:127–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Chen S, Zheng T, Zeng Z, Liu L (2015) A point mutation of magnesium chelatase OsCHLI gene dampens the interaction between CHLI and CHLD subunits in Rice. Plant Mol Biol Rep 33:1975–1987

    Article  Google Scholar 

  • Li F, Zhang H, Yang T, Wang J, Gu X (2022) Relationgship between fluorescence parameters ans chlorophyll content in soybean leaves at pod filling stage. J Nuclear Agric Sci 36:2519–2527

    Google Scholar 

  • Li M, Yang D, Li W (2007) Leaf gas exchange characteristics and chlorophyll fluorescence of three wetland plants in response to long-term soil flooding. Photosynthetica 45:222–228

    Article  Google Scholar 

  • Li X, Xiang F, Zhang W, Yan J, Li X, Zhong M, Yang P, Chen C, Liu X, Mao D, Zhao X (2021) Characterization and fine mapping of a new dwarf mutant in Brassica napus. BMC Plant Biol 21:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao X, Yan J, Zhong M, Zhuo Y, Wu D, He R, Zhao X, Liu X (2016) EMS mutagenesis and analysis of multi-branched and long-silique mutants in Brassica napus L. Life Sci Res 20:435–441

    Google Scholar 

  • Lundqvist J, Elmlund H, Wulff RP, Berglund L, Elmlund D, Emanuelsson C, Hebert H, Willows RD, Hansson M, Lindahl M, Al-Karadaghi S (2010) ATP-induced conformational dynamics in the AAA+ motor unit of magnesium chelatase. Structure 18(3):354–365

    Article  CAS  PubMed  Google Scholar 

  • Luo T, Luo S, Araujo WL, Schlicke H, Rothbart M, Yu J, Fan T, Fernie AR, Grimm B, Luo M (2013) Virus-induced gene silencing of pea CHLI and CHLD affects tetrapyrrole biosynthesis, chloroplast development and the primary metabolic network. Plant Physiol Biochem 65:17–26

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Shi J, Wang D, Liang X, Wei F, Gong C, Qiu L, Zhou H, Folta K, Wen Y, Feng J (2023) A point mutation in the gene encoding Mg-chelatase subunit I influences strawberry leaf color and metabolism. Plant Physiol. https://doi.org/10.1093/plphys/kiad247

  • Mansfeld BN, Grumet R (2018) QTLseqr: an R package for bulk segregant analysis with next-generation sequencing. Plant Genome 11:180006

    Article  Google Scholar 

  • Mueller AH, Dockter C, Gough SP, Lundqvist U, von Wettstein D, Hansson M (2012) Characterization of mutations in barley fch2 encoding chlorophyllide a oxygenase. Plant Cell Physiol 53:1232–1246

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Masuda T, Sato N, Yamagata H, Bowler C, Ohta H, Shioi Y, Takamiya K (1995) Cloning, subcellular localization and expression of CHL1, a subunit of magnesium-chelatase in soybean. Biochem Bioph Res Co 215:422–428

    Article  CAS  Google Scholar 

  • Pogson BJ, Albrecht V (2011) Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol 155:1545–1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rissler HM, Collakova E, DellaPenna D, Whelan J, Pogson BJ (2002) Chlorophyll biosynthesis. Expression of a second chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol 128:770–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryouichi T, Koichi K, Tatsuru M (2011) Tetrapyrrole metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0145

    Article  Google Scholar 

  • Sakuraba Y, Rahman ML, Cho SH, Kim YS, Koh HJ, Yoo SC, Paek NC (2013) The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J 74:122–133

    Article  CAS  PubMed  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zhang N, Du L (2007) Chlorophyll biosynthesis in a chlorophyll b-deficient oilseed rape mutant Cr3529. Acta Bot Boreal-Occident Sin 27(10):1962–1966

    CAS  Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Liu D, Lu S, Yu L, Li Y, Lin S, Li L, Du Z, Liu X, Li X, Ma W, Yang Q, Guo L (2020) Development and screening of EMS mutants with altered seed oil content or fatty acid composition in Brassica napus. Plant J 104:1410–1422

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Ling Y, Fang L, Peng D, He G (2013) Gene cloning and functional analysis of yellow green leaf3 (ygl3) gene during the whole-plant growth stage in rice. Genes genom 35:87–93

    Article  CAS  Google Scholar 

  • Walker CJ, Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327(2):321–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Zhang L, Li Y, Ali Buttar Z, Wang N, Xie Y, Wang C (2020a) Single nucleotide mutagenesis of the TaCHLI gene suppressed chlorophyll and fatty acid biosynthesis in common wheat seedlings. Front Plant Sci 11:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T, Wei L, Wang J, Xie L, Li Y, Ran S, Ren L, Lu K, Li J, Timko MP, Liu L (2020b) Integrating GWAS, linkage mapping and gene expression analyses reveals the genetic control of growth period traits in rapeseed (Brassica napus L.). Biotechnol Biofuels 13:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, He Y, Yang M, He J, Guan R (2016) Fine mapping of a dominant gene conferring chlorophyll-deficiency in Brassica napus. Sci Rep 6:31419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao HG, Yang HW, Rao Y, Yang B, Zhu Y (2013) Photosynthetic characteristics and chlorophyll fluorescence kinetic parameters analyses of chlorophyll-reduced mutant in Brassica napus L. Acta Agronomica Sinica 39(3):520–529

    Article  CAS  Google Scholar 

  • Xing H, Dong L, Wang Z, Zhang H, Han C, Liu B, Wang X, Chen Q (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Yang J, Wu Z, Liu H, Huang F, Wu Y, Carrie C, Narsai R, Murcha M, Whelan J, Wu P (2013) Identification of a dual-targeted protein belonging to the mitochondrial carrier family that is required for early leaf development in rice. Plant Physiol 161:2036–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Li Y, Yuan C, Zhang H, Peng H, Lin H, Wang X, Wu X (2006) Studies of photosystem complexes and chlorophyll synthesis in chlorophyll-deficient rice mutant W1. Sci Agric Sin 39(7):1299–1305

    CAS  Google Scholar 

  • Yang M, Wan S, Chen J, Chen W, Wang Y, Li W, Wang M, Guan R (2023) Mutation to a cytochrome P450-like gene alters the leaf color by affecting the heme and chlorophyll biosynthesis pathways in Brassica napus. Plant J. https://doi.org/10.1111/tpj.16382

  • Yang P, Li Y, He C, Yan J, Zhang W, Li X, Xiang F, Zuo Z, Li X, Zhu Y, Liu X, Zhao X (2020) Phenotype and TMT-based quantitative proteomics analysis of Brassica napus reveals new insight into chlorophyll synthesis and chloroplast structure. J Proteomics 214:103621

    Article  CAS  PubMed  Google Scholar 

  • Ye S, Yang J, Huang Y, Liu J, Ma X, Zhao L, Ma C, Tu J, Shen J, Fu T, Wen J (2022) Bulk segregant analysis-sequencing and RNA-Seq analyses reveal candidate genes associated with albino phenotype in Brassica napus. Front Plant Sci 13:994616

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Li J, Yoo JH, Yoo SC, Cho SH, Koh HJ, Seo HS, Paek NC (2006) Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Mol Biol 62:325–337

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li X, Yang Y, Hu K, Zhou X, Wen J, Yi B, Shen J, Ma C, Fu T (2022) Bna A02.YTG1,encoding a tetratricopeptide repeat protein,is required for early chloroplast biogenesis in Brassica napus. Crop J 10:597–610

    Article  Google Scholar 

  • Zhang Z, Xiao G, Liu R, Tan T, Guan C, Wang G, Chen S (2014) Proteomic analysis of differentially expressed proteins between Xiangyou 15 variety and the mutant M15. Front Biol 9:234–243

    Article  CAS  Google Scholar 

  • Zhao Y, Du L, Yang S, Li S, Zhang Y (2001) Chloroplast composition and structural differences in a chlorophyll-reduced mutant of oilseed rape of seedlings. Acta Botanica Sinica 43:877–880

    CAS  Google Scholar 

  • Zhu L, Yang Z, Zeng X, Gao J, Liu J, Yi B, Ma C, Shen J, Tu J, Fu T, Wen J (2017) Heme oxygenase 1 defects lead to reduced chlorophyll in Brassica napus. Plant Mol Biol 93:579–592

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zeng X, Chen Y, Yang Z, Qi L, Pu Y, Yi B, Wen J, Ma C, Shen J, Tu J, Fu T (2014) Genetic characterisation and fine mapping of a chlorophyll-deficient mutant (BnaC.ygl) in Brassica napus. Mol Breeding 34:603–614

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zhongsong Liu for providing L329 (xiangyou 15) seeds, Prof. Wusheng Peng for 2B seeds.

Funding

This work was supported by the National Natural Science Foundation of China (U20A2029), Natural Science Foundation of Changsha city (kq2202150).

Author information

Authors and Affiliations

Authors

Contributions

HZ, WZ, FX, XinmeiL, BL, and XZ designed the research; HZ, WZ, FX, ZZ, YG, and TC performed the experiments; FD, QZ, XinL, MF, and XinmeiL provided technical assistance to HZ, WZ, and FX; HZ, WZ, FX, XinmeiL, BL, and XZ analyzed the data; HZ, BL, and XZ supervised and completed the writing; HZ, WZ, and FX contributed equally to this work. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Bao Li or Xiaoying Zhao.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, W., Xiang, F. et al. Photosynthetic characteristics and genetic mapping of a new yellow leaf mutant crm1 in Brassica napus. Mol Breeding 43, 80 (2023). https://doi.org/10.1007/s11032-023-01429-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-023-01429-6

Keywords

Navigation