Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Angiotensin-(1-7) Improves Islet β-cell Dedifferentiation by Activating PI3K/Akt/FoxO1 Pathway

Author(s): Hao Guo, Dandan Guo, Min An, Ruonan Zhang, Caixia Wang and Junhua He*

Volume 30, Issue 12, 2023

Published on: 10 November, 2023

Page: [1009 - 1019] Pages: 11

DOI: 10.2174/0109298665257646231020054036

Price: $65

Abstract

Background: Islet β-cell dedifferentiation may be the main cause of reduced insulin secretion. Angiotensin-(1-7) [Ang-(1-7)] can attenuate high glucose-induced apoptosis and dedifferentiation of pancreatic β-cell, but the specific signal transduction pathway and mechanism are not yet clear.

Objectives: This study aimed to investigate the effects of Ang-(1-7) on high glucose-induced islet β-cell dedifferentiation by activating the phosphatidylinositol-3-kinase/Protein kinase B/ Forkhead box transcription factor O1 (PI3K/Akt/FoxO1) signaling pathway.

Methods: The mouse islet β-cell line MIN6 cells were passaged and cultured and randomly divided into five groups: control (Con) group, high glucose (HG) group, HG with Ang-(1-7) group, HG with Ang-(1-7) and specific MasR antagonist A-779 group, and HG with Ang-(1-7) and PI3K inhibitor LY294002 group. After 48 hours, glucose-stimulated insulin secretion (GSIS) was detected by Enzyme-Linked Immunosorbent Assay (ELISA). The mRNA and protein expression levels of β-cell-specific factors (Pancreatic duodenal homeobox-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A(MafA)) and endocrine progenitor cell-specific factors (Octamer binding transcription factor 4(Oct4), Nanog) were measured by Real Time-PCR and Western blot. The factors of protein expression levels of PI3K/Akt/FoxO1 signaling pathway (Akt, p-Akt, Fox- O1, p-FoxO1) were determined by Western blot.

Results: We observed for the first time that high glucotoxicity can induce dedifferentiation of pancreatic islet β-cell, causing a decrease in insulin secretion levels and expression of Pdx1, MafA, p-- FoxO1, and p-Akt and an increase in expression of Oct4 and Nanog. After Ang-(1-7) intervention, insulin secretion levels and expression of Pdx1, MafA, p-FoxO1 and p-Akt were increased, and the levels of Oct4 and Nanog were reduced. However, A-779 and LY294002 could reverse this effect. During these processes, the total Akt and total FoxO1 expression did not change significantly.

Conclusion: Ang-(1-7) may prevent high glucose-induced pathological dedifferentiation of pancreatic β-cell by activating the PI3K/Akt/FoxO1 signaling pathway.

Keywords: Diabetes mellitus, angiotensin-(1-7), islet β-cell, dedifferentiation, pi3k/akt/foxo1, protein.

Graphical Abstract
[1]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183, 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[2]
Rhodes, C.J. Type 2 diabetes-a matter of beta-cell life and death? Science, 2005, 307(5708), 380-384.
[http://dx.doi.org/10.1126/science.1104345] [PMID: 15662003]
[3]
Stenvers, D.J.; Scheer, F.A.J.L.; Schrauwen, P.; la Fleur, S.E.; Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol., 2019, 15(2), 75-89.
[http://dx.doi.org/10.1038/s41574-018-0122-1] [PMID: 30531917]
[4]
James, D.E.; Stöckli, J.; Birnbaum, M.J. The aetiology and molecular landscape of insulin resistance. Nat. Rev. Mol. Cell Biol., 2021, 22(11), 751-771.
[http://dx.doi.org/10.1038/s41580-021-00390-6] [PMID: 34285405]
[5]
Martin, B.C.; Warram, J.H.; Krolewski, A.S.; Soeldner, J.S.; Kahn, C.R.; Martin, B.C.; Bergman, R.N. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet, 1992, 340(8825), 925-929.
[http://dx.doi.org/10.1016/0140-6736(92)92814-V] [PMID: 1357346]
[6]
Inoue, K.; Nianogo, R.; Telesca, D.; Goto, A.; Khachadourian, V.; Tsugawa, Y.; Sugiyama, T.; Mayeda, E.R.; Ritz, B. Low HbA1c levels and all-cause or cardiovascular mortality among people without diabetes: the US National Health and Nutrition Examination Survey 1999–2015. Int. J. Epidemiol., 2021, 50(4), 1373-1383.
[http://dx.doi.org/10.1093/ije/dyaa263] [PMID: 33378417]
[7]
Cole, J.B.; Florez, J.C. Genetics of diabetes mellitus and diabetes complications. Nat. Rev. Nephrol., 2020, 16(7), 377-390.
[http://dx.doi.org/10.1038/s41581-020-0278-5] [PMID: 32398868]
[8]
Kim, W.H.; Lee, J.W.; Suh, Y.H.; Hong, S.H.; Choi, J.S.; Lim, J.H.; Song, J.H.; Gao, B.; Jung, M.H. Exposure to chronic high glucose induces beta-cell apoptosis through decreased interaction of glucokinase with mitochondria: Downregulation of glucokinase in pancreatic beta-cells. Diabetes, 2005, 54(9), 2602-2611.
[http://dx.doi.org/10.2337/diabetes.54.9.2602] [PMID: 16123348]
[9]
Gershengorn, M.C.; Hardikar, A.A.; Wei, C.; Geras-Raaka, E.; Marcus-Samuels, B.; Raaka, B.M. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science, 2004, 306(5705), 2261-2264.
[http://dx.doi.org/10.1126/science.1101968] [PMID: 15564314]
[10]
Dor, Y.; Glaser, B. β-cell dedifferentiation and type 2 diabetes. N. Engl. J. Med., 2013, 368(6), 572-573.
[http://dx.doi.org/10.1056/NEJMcibr1214034] [PMID: 23388011]
[11]
Talchai, C.; Xuan, S.; Lin, H.V.; Sussel, L.; Accili, D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell, 2012, 150(6), 1223-1234.
[http://dx.doi.org/10.1016/j.cell.2012.07.029] [PMID: 22980982]
[12]
Butler, A.E.; Janson, J.; Bonner-Weir, S.; Ritzel, R.; Rizza, R.A.; Butler, P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes, 2003, 52(1), 102-110.
[http://dx.doi.org/10.2337/diabetes.52.1.102] [PMID: 12502499]
[13]
Cinti, F.; Bouchi, R.; Kim-Muller, J.Y.; Ohmura, Y.; Sandoval, P.R.; Masini, M.; Marselli, L.; Suleiman, M.; Ratner, L.E.; Marchetti, P.; Accili, D. Evidence of β-Cell dedifferentiation in human type 2 diabetes. J. Clin. Endocrinol. Metab., 2016, 101(3), 1044-1054.
[http://dx.doi.org/10.1210/jc.2015-2860] [PMID: 26713822]
[14]
Accili, D. Insulin action research and the future of diabetes treatment: the 2017 banting medal for scientific achievement lecture. Diabetes, 2018, 67(9), 1701-1709.
[http://dx.doi.org/10.2337/dbi18-0025] [PMID: 30135131]
[15]
Lau, T.; Carlsson, P.O.; Leung, P.S. Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia, 2004, 47(2), 240-248.
[http://dx.doi.org/10.1007/s00125-003-1295-1] [PMID: 14722647]
[16]
Chen, H.; Zhou, W.; Ruan, Y.; Yang, L.; Xu, N.; Chen, R.; Yang, R.; Sun, J.; Zhang, Z. Reversal of angiotensin ll-induced β-cell dedifferentiation via inhibition of NF-κb signaling. Mol. Med., 2018, 24(1), 43.
[http://dx.doi.org/10.1186/s10020-018-0044-3] [PMID: 30134927]
[17]
Perkins, J.M.; Davis, S.N. The renin–angiotensin–aldosterone system: a pivotal role in insulin sensitivity and glycemic control. Curr. Opin. Endocrinol. Diabetes Obes., 2008, 15(2), 147-152.
[http://dx.doi.org/10.1097/MED.0b013e3282f7026f] [PMID: 18316950]
[18]
Yuan, L.; Li, Y.; Li, G.; Song, Y.; Gong, X. Ang(1-7) treatment attenuates β-cell dysfunction by improving pancreatic microcirculation in a rat model of Type 2 diabetes. J. Endocrinol. Invest., 2013, 36(11), 931-937.
[PMID: 23640708]
[19]
Chhabra, K.H.; Xia, H.; Pedersen, K.B.; Speth, R.C.; Lazartigues, E. Pancreatic angiotensin-converting enzyme 2 improves glycemia in angiotensin II-infused mice. Am. J. Physiol. Endocrinol. Metab., 2013, 304(8), E874-E884.
[http://dx.doi.org/10.1152/ajpendo.00490.2012] [PMID: 23462816]
[20]
Bossi, F.; Bernardi, S.; De Nardo, D.; Bramante, A.; Candido, R.; Carretta, R.; Fischetti, F.; Fabris, B. Angiotensin 1–7 significantly reduces diabetes-induced leukocyte recruitment both in vivo and in vitro. Atherosclerosis, 2016, 244, 121-130.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.11.017] [PMID: 26630181]
[21]
Meng, Y.; Yu, C.H.; Cai, S.X.; Li, X. Anti-fibrotic effects of angiotensin1-7 on bleomycin-induced pulmonary fibrosis in rats. Zhonghua Yi Xue Za Zhi, 2013, 93(20), 1585-1589.
[PMID: 24028731]
[22]
Talchai, S.C.; Accili, D. Legacy effect of Foxo1 in pancreatic endocrine progenitors on adult β-Cell mass and function. Diabetes, 2015, 64(8), 2868-2879.
[http://dx.doi.org/10.2337/db14-1696] [PMID: 25784544]
[23]
Xu, K.; Yin, N.; Peng, M.; Stamatiades, E.G.; Shyu, A.; Li, P.; Zhang, X.; Do, M.H.; Wang, Z.; Capistrano, K.J.; Chou, C.; Levine, A.G.; Rudensky, A.Y.; Li, M.O. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science, 2021, 371(6527), 405-410.
[http://dx.doi.org/10.1126/science.abb2683] [PMID: 33479154]
[24]
Xuan, X.; Gao, F.; Ma, X.; Huang, C.; Wang, Y.; Deng, H.; Wang, S.; Li, W.; Yuan, L. Activation of ACE2/angiotensin (1–7) attenuates pancreatic β cell dedifferentiation in a high-fat-diet mouse model. Metabolism, 2018, 81, 83-96.
[http://dx.doi.org/10.1016/j.metabol.2017.12.003] [PMID: 29225087]
[25]
Furuyama, K.; Chera, S.; van Gurp, L.; Oropeza, D.; Ghila, L.; Damond, N.; Vethe, H.; Paulo, J.A.; Joosten, A.M.; Berney, T.; Bosco, D.; Dorrell, C.; Grompe, M.; Ræder, H.; Roep, B.O.; Thorel, F.; Herrera, P.L. Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature, 2019, 567(7746), 43-48.
[http://dx.doi.org/10.1038/s41586-019-0942-8] [PMID: 30760930]
[26]
Neelankal John, A.; Morahan, G.; Jiang, F.X. Incomplete re-expression of neuroendocrine progenitor/stem cell markers is a key feature of β-cell dedifferentiation. J. Neuroendocrinol., 2017, 29(1)
[http://dx.doi.org/10.1111/jne.12450] [PMID: 27891681]
[27]
Fiori, J.L.; Shin, Y.K.; Kim, W.; Krzysik-Walker, S.M.; González-Mariscal, I.; Carlson, O.D.; Sanghvi, M.; Moaddel, R.; Farhang, K.; Gadkaree, S.K.; Doyle, M.E.; Pearson, K.J.; Mattison, J.A.; de Cabo, R.; Egan, J.M. Resveratrol prevents β-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes, 2013, 62(10), 3500-3513.
[http://dx.doi.org/10.2337/db13-0266] [PMID: 23884882]
[28]
Wang, Z.; York, N.W.; Nichols, C.G.; Remedi, M.S. Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab., 2014, 19(5), 872-882.
[http://dx.doi.org/10.1016/j.cmet.2014.03.010] [PMID: 24746806]
[29]
Han, F.; Li, X.; Yang, J.; Liu, H.; Zhang, Y.; Yang, X.; Yang, S.; Chang, B.; Chen, L.; Chang, B. Salsalate prevents β-cell dedifferentiation in OLETF rats with type 2 diabetes through notch1 pathway. Aging Dis., 2019, 10(4), 719-730.
[http://dx.doi.org/10.14336/AD.2018.1221] [PMID: 31440379]
[30]
Jardine, M.J.; Kotwal, S.S.; Bassi, A.; Hockham, C.; Jones, M.; Wilcox, A.; Pollock, C.; Burrell, L.M.; McGree, J.; Rathore, V.; Jenkins, C.R.; Gupta, L.; Ritchie, A.; Bangi, A.; D’Cruz, S.; McLachlan, A.J.; Finfer, S.; Cummins, M.M.; Snelling, T.; Jha, V. Angiotensin receptor blockers for the treatment of covid-19: pragmatic, adaptive, multicentre, phase 3, randomised controlled trial. BMJ, 2022, 379, e072175.
[http://dx.doi.org/10.1136/bmj-2022-072175] [PMID: 36384746]
[31]
Garreta, E.; Prado, P.; Stanifer, M.L.; Monteil, V.; Marco, A.; Ullate-Agote, A.; Moya-Rull, D.; Vilas-Zornoza, A.; Tarantino, C.; Romero, J.P.; Jonsson, G.; Oria, R.; Leopoldi, A.; Hagelkruys, A.; Gallo, M.; González, F.; Domingo-Pedrol, P.; Gavaldà, A.; del Pozo, C.H.; Hasan Ali, O.; Ventura-Aguiar, P.; Campistol, J.M.; Prosper, F.; Mirazimi, A.; Boulant, S.; Penninger, J.M.; Montserrat, N. A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells. Cell Metab., 2022, 34(6), 857-873.e9.
[http://dx.doi.org/10.1016/j.cmet.2022.04.009] [PMID: 35561674]
[32]
Starr, T.N.; Zepeda, S.K.; Walls, A.C.; Greaney, A.J.; Alkhovsky, S.; Veesler, D.; Bloom, J.D. ACE2 binding is an ancestral and evolvable trait of sarbecoviruses. Nature, 2022, 603(7903), 913-918.
[http://dx.doi.org/10.1038/s41586-022-04464-z] [PMID: 35114688]
[33]
Low, J.S.; Jerak, J.; Tortorici, M.A.; McCallum, M.; Pinto, D.; Cassotta, A.; Foglierini, M.; Mele, F.; Abdelnabi, R.; Weynand, B.; Noack, J.; Montiel-Ruiz, M.; Bianchi, S.; Benigni, F.; Sprugasci, N.; Joshi, A.; Bowen, J.E.; Stewart, C.; Rexhepaj, M.; Walls, A.C.; Jarrossay, D.; Morone, D.; Paparoditis, P.; Garzoni, C.; Ferrari, P.; Ceschi, A.; Neyts, J.; Purcell, L.A.; Snell, G.; Corti, D.; Lanzavecchia, A.; Veesler, D.; Sallusto, F. ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science, 2022, 377(6607), 735-742.
[http://dx.doi.org/10.1126/science.abq2679] [PMID: 35857703]
[34]
Rein, J.; Bader, M. Renin-angiotensin system in diabetes. Protein Pept. Lett., 2017, 24(9), 833-840.
[PMID: 28758590]
[35]
Yang, Y.Y.; Sun, X.T.; Li, Z.X.; Chen, W.Y.; Wang, X.; Liang, M.L.; Shi, H.; Yang, Z.S.; Zeng, W.T. Protective effect of angiotensin-(1-7) against hyperglycaemia-induced injury in H9c2 cardiomyoblast cells via the PI3K̸Akt signaling pathway. Int. J. Mol. Med., 2018, 41(3), 1283-1292.
[PMID: 29286068]
[36]
Li, J.; Zhu, R.; Liu, Y.; Yang, J.; Wang, X.; Geng, L.; Xu, T.; He, J. Angiotensin-(1-7) improves islet function in a rat model of streptozotocin- induced diabetes mellitus by up-regulating the expression of Pdx1/Glut2. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(1), 156-162.
[http://dx.doi.org/10.2174/1871530320666200717161538] [PMID: 32679026]
[37]
Liu, J.; Li, X.; Wang, X.; Peng, L.; Song, G.; He, J. Angiotensin(1–7) improves islet function in diabetes through reducing JNK/caspase-3 signaling. Horm. Metab. Res., 2022, 54(4), 250-258.
[http://dx.doi.org/10.1055/a-1796-9286] [PMID: 35413746]
[38]
Santos, R.A.; Campagnole-Santos, M.J.; Baracho, N.C.; Fontes, M.A.; Silva, L.C.; Neves, L.A.; Oliveira, D.R.; Caligiorne, S.M.; Rodrigues, A.R.; Gropen Júnior, C. Characterization of a new angiotensin antagonist selective for angiotensin-(1-7): evidence that the actions of angiotensin-(1-7) are mediated by specific angiotensin receptors. Brain Res. Bull., 1994, 35(4), 293-298.
[http://dx.doi.org/10.1016/0361-9230(94)90104-X] [PMID: 7850477]
[39]
Santos, R.A.S.; Simões e Silva, A.C.; Magaldi, A.J.; Khosla, M.C.; Cesar, K.R.; Passaglio, K.T.; Baracho, N.C.V. Evidence for a physiological role of angiotensin-(1-7) in the control of hydroelectrolyte balance. Hypertension, 1996, 27(4), 875-884.
[http://dx.doi.org/10.1161/01.HYP.27.4.875] [PMID: 8613263]
[40]
Simões e Silva, A.C.; Bello, A.P.C.; Baracho, N.C.V.; Khosla, M.C.; Santos, R.A.S. Diuresis and natriuresis produced by long term administration of a selective Angiotensin-(1–7) antagonist in normotensive and hypertensive rats. Regul. Pept., 1998, 74(2-3), 177-184.
[http://dx.doi.org/10.1016/S0167-0115(98)00038-X] [PMID: 9712179]
[41]
Nemoto, S.; Finkel, T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science, 2002, 295(5564), 2450-2452.
[http://dx.doi.org/10.1126/science.1069004] [PMID: 11884717]
[42]
Yan, D.; Cai, Y.; Luo, J.; Liu, J.; Li, X.; Ying, F.; Xie, X.; Xu, A.; Ma, X.; Xia, Z. FOXO1 contributes to diabetic cardiomyopathy via inducing imbalanced oxidative metabolism in type 1 diabetes. J. Cell. Mol. Med., 2020, 24(14), 7850-7861.
[http://dx.doi.org/10.1111/jcmm.15418] [PMID: 32450616]
[43]
Peng, S.; Li, W.; Hou, N.; Huang, N. A Review of FoxO1-regulated metabolic diseases and related drug discoveries. Cells, 2020, 9(1), 184.
[http://dx.doi.org/10.3390/cells9010184] [PMID: 31936903]
[44]
Wang, W.; Zhang, C. Targeting β-cell dedifferentiation and transdifferentiation: opportunities and challenges. Endocr. Connect., 2021, 10(8), R213-R228.
[http://dx.doi.org/10.1530/EC-21-0260] [PMID: 34289444]
[45]
Zhang, Z.; Hu, Y.; Xu, N.; Zhou, W.; Yang, L.; Chen, R.; Yang, R.; Sun, J.; Chen, H. A new way for beta cell neogenesis: transdifferentiation from alpha cells induced by glucagon-like peptide 1. J. Diabetes Res., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/2583047] [PMID: 31001561]
[46]
Manukyan, M.C.; Weil, B.R.; Wang, Y.; Abarbanell, A.M.; Herrmann, J.L.; Poynter, J.A.; Meldrum, D.R. The phosphoinositide-3 kinase survival signaling mechanism in sepsis. Shock, 2010, 34(5), 442-449.
[http://dx.doi.org/10.1097/SHK.0b013e3181e14ea9] [PMID: 20386497]
[47]
Chen, E.; Chen, C.; Niu, Z.; Gan, L.; Wang, Q.; Li, M.; Cai, X.; Gao, R.; Katakam, S.; Chen, H.; Zhang, S.; Zhou, R.; Cheng, X.; Qiu, Y.; Yu, H.; Zhu, T.; Liu, J. Poly(I:C) preconditioning protects the heart against myocardial ischemia/reperfusion injury through TLR3/PI3K/Akt-dependent pathway. Signal Transduct. Target. Ther., 2020, 5(1), 216.
[http://dx.doi.org/10.1038/s41392-020-00257-w] [PMID: 33154351]
[48]
Yang, S.F.; Chen, Y.S.; Chien, H.W.; Wang, K.; Lin, C.L.; Chiou, H.L.; Lee, C.Y.; Chen, P.N.; Hsieh, Y.H. Melatonin attenuates epidermal growth factor-induced cathepsin S expression in ARPE-19 cells: Implications for proliferative vitreoretinopathy. J. Pineal Res., 2020, 68(1), e12615.
[http://dx.doi.org/10.1111/jpi.12615] [PMID: 31605630]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy