Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

First Display of Haloalkane Dehalogenase LinB on the Surface of Bacillus subtilis Spore

Author(s): Fuli Wang, Xiujie Liu, Tianyu Song, Chengxin Pei, Qibin Huang, Hui Jiang* and Hailing Xi*

Volume 30, Issue 11, 2023

Published on: 08 November, 2023

Page: [959 - 965] Pages: 7

DOI: 10.2174/0109298665238177231020044054

Price: $65

Abstract

Background: LinB, as a Haloalkane dehalogenase, has good catalytic activity for many highly toxic and recalcitrant compounds, and can realize the elimination of chemical weapons HD in a green non-toxic mode.

Objectives: In order to display Haloalkane dehalogenase LinB on the surface of Bacillus subtilis spore.

Methods: We have constituted the B. subtilis spore surface display system of halogenated alkanes dehalogenase LinB by gene recombination.

Results: Data revealed that LinB can display on spore surface successfully. The hydrolyzing HD analogue 2-chloroethyl ethylsulfide (2-CEES) activity of displayed LinB spores was 4.30±0.09 U/mL, and its specific activity was 0.78±0.03U/mg. Meanwhile, LinB spores showed a stronger stress resistance activity on 2-CEES than free LinB. This study obtained B. subtilis spores of LinB (phingobium japonicum UT26) with enzyme activity that was not reported before.

Conclusion: Spore surface display technology uses resistance spore as the carrier to guarantee LinB activity, enhances its stability, and reduces the production cost, thus expanding the range of its application.

Keywords: Haloalkane dehalogenase LinB, Bacillus subtilis, spore surface display, catalytic activity, gene recombination, 2- CEES, enzyme activity.

Graphical Abstract
[1]
Janssen, D.B. Evolving haloalkane dehalogenases. Curr. Opin. Chem. Biol., 2004, 8(2), 150-159.
[http://dx.doi.org/10.1016/j.cbpa.2004.02.012] [PMID: 15062775]
[2]
Marques, S.M.; Dunajova, Z.; Prokop, Z.; Chaloupkova, R.; Brezovsky, J.; Damborsky, J. Catalytic cycle of haloalkane dehalogenases toward unnatural substrates explored by computational modeling. J. Chem. Inf. Model., 2017, 57(8), 1970-1989.
[http://dx.doi.org/10.1021/acs.jcim.7b00070] [PMID: 28696117]
[3]
Fibinger, M.P.C.; Davids, T.; Böttcher, D.; Bornscheuer, U.T. A selection assay for haloalkane dehalogenase activity based on toxic substrates. Appl. Microbiol. Biotechnol., 2015, 99(21), 8955-8962.
[http://dx.doi.org/10.1007/s00253-015-6686-y] [PMID: 25998660]
[4]
Nagata, Y.; Ohtsubo, Y.; Tsuda, M. Properties and biotechnological applications of natural and engineered haloalkane dehalogenases. Appl. Microbiol. Biotechnol., 2015, 99(23), 9865-9881.
[http://dx.doi.org/10.1007/s00253-015-6954-x] [PMID: 26373728]
[5]
Nagata, Y.; Prokop, Z.; Sato, Y.; Jerabek, P.; Kumar, A.; Ohtsubo, Y.; Tsuda, M.; Damborský, J. Degradation of β-Hexachlorocyclohexane by Haloalkane Dehalogenase LinB from Sphingomonas paucimobilis UT26. Appl. Environ. Microbiol., 2005, 71(4), 2183-2185.
[http://dx.doi.org/10.1128/AEM.71.4.2183-2185.2005] [PMID: 15812056]
[6]
Bala, K.; Geueke, B.; Miska, M.E.; Rentsch, D.; Poiger, T.; Dadhwal, M.; Lal, R.; Holliger, C.; Kohler, H.P.E. Enzymatic conversion of ε-hexachlorocyclohexane and a heptachlorocyclohexane isomer, two neglected components of technical hexachlorocyclohexane. Environ. Sci. Technol., 2012, 46(7), 4051-4058.
[http://dx.doi.org/10.1021/es204143x] [PMID: 22385211]
[7]
Heeb, N.V.; Zindel, D.; Geueke, B.; Kohler, H.P.E.; Lienemann, P. Biotransformation of Hexabromocyclododecanes (HBCDs) with LinB-an HCH-converting bacterial enzyme. Environ. Sci. Technol., 2012, 46(12), 6566-6574.
[http://dx.doi.org/10.1021/es2046487] [PMID: 22578084]
[8]
Heeb, N.V.; Zindel, D.; Graf, H.; Azara, V.; Bernd Schweizer, W.; Geueke, B.; Kohler, H.P.E.; Lienemann, P. Stereochemistry of LinB-catalyzed biotransformation of δ-HBCD to 1R,2R, 5S,6R,9R,10S-pentabromocyclododecanol. Chemosphere, 2013, 90(6), 1911-1919.
[http://dx.doi.org/10.1016/j.chemosphere.2012.10.019] [PMID: 23177717]
[9]
Tang, X.; Zhang, R.; Li, Y.; Zhang, Q.; Wang, W. Enantioselectivity of haloalkane dehalogenase LinB on the degradation of 1,2-dichloropropane: A QM/MM study. Bioorg. Chem., 2017, 73, 16-23.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.015] [PMID: 28527381]
[10]
Prokop, Z.; Opluštil, F.; DeFrank, J.; Damborský, J. Enzymes fight chemical weapons. Biotechnol. J., 2006, 1(12), 1370-1380.
[http://dx.doi.org/10.1002/biot.200600166] [PMID: 17136732]
[11]
Wang, F.; Song, T.; Jiang, H.; Pei, C.; Huang, Q.; Xi, H. Bacillus subtilis spore surface display of haloalkane dehalogenase DhaA. Curr. Microbiol., 2019, 76(10), 1161-1167.
[http://dx.doi.org/10.1007/s00284-019-01723-7] [PMID: 31278426]
[12]
Dai, X.; Liu, M.; Pan, K.; Yang, J. Surface display of OmpC of Salmonella serovar Pullorum on Bacillus subtilis spores. PLoS One, 2018, 13(1), e0191627.
[http://dx.doi.org/10.1371/journal.pone.0191627] [PMID: 29370221]
[13]
Wang, H.; Wang, Y.; Yang, R. Recent progress in Bacillus subtilis spore-surface display: Concept, progress, and future. Appl. Microbiol. Biotechnol., 2017, 101(3), 933-949.
[http://dx.doi.org/10.1007/s00253-016-8080-9] [PMID: 28062973]
[14]
Chen, H.; Ullah, J.; Jia, J. Progress in Bacillus subtilis spore surface display technology towards environment, vaccine development, and biocatalysis. J. Mol. Microbiol. Biotechnol., 2017, 27(3), 159-167.
[PMID: 28605732]
[15]
Iwanicki, A.; Piątek, I.; Stasiłojć, M.; Grela, A.; Łęga, T.; Obuchowski, M.; Hinc, K. A system of vectors for Bacillus subtilis spore surface display. Microb. Cell Fact., 2014, 13(1), 30.
[http://dx.doi.org/10.1186/1475-2859-13-30] [PMID: 24568122]
[16]
Wang, N.; Chang, C.; Yao, Q.; Li, G.; Qin, L.; Chen, L.; Chen, K. Display of Bombyx mori alcohol dehydrogenases on the Bacillus subtilis spore surface to enhance enzymatic activity under adverse conditions. PLoS One, 2011, 6(6), e21454.
[http://dx.doi.org/10.1371/journal.pone.0021454] [PMID: 21738670]
[17]
Nelson, D.L.; Kornberg, A. Biochemical studies of bacterial sporulation and germination. 18. Free amino acids in spores. J. Biol. Chem., 1970, 245(5), 1128-1136.
[http://dx.doi.org/10.1016/S0021-9258(18)63298-3] [PMID: 4984698]
[18]
Monroe, A.; Setlow, P. Localization of the transglutaminase cross-linking sites in the Bacillus subtilis spore coat protein GerQ. J. Bacteriol., 2006, 188(21), 7609-7616.
[http://dx.doi.org/10.1128/JB.01116-06] [PMID: 16936016]
[19]
Saleem, M.; Brim, H.; Hussain, S.; Arshad, M.; Leigh, M.B.; Zia-ul-hassan Perspectives on microbial cell surface display in bioremediation. Biotechnol. Adv., 2008, 26(2), 151-161.
[http://dx.doi.org/10.1016/j.biotechadv.2007.10.002] [PMID: 18068937]
[20]
Mingmongkolchai, S.; Panbangred, W. Display of Escherichia coli Phytase on the Surface of Bacillus subtilis Spore Using CotG as an Anchor Protein. Appl. Biochem. Biotechnol., 2018, 29(7), 256-267.
[PMID: 30088242]
[21]
Giglio, R.; Fani, R.; Isticato, R.; De Felice, M.; Ricca, E.; Baccigalupi, L. Organization and evolution of the cotG and cotH genes of Bacillus subtilis. J. Bacteriol., 2011, 193(23), 6664-6673.
[http://dx.doi.org/10.1128/JB.06121-11] [PMID: 21984783]
[22]
Kim, J.; Schumann, W. Display of proteins on Bacillus subtilis endospores. Cell. Mol. Life Sci., 2009, 66(19), 3127-3136.
[http://dx.doi.org/10.1007/s00018-009-0067-6] [PMID: 19554258]
[23]
Kim, J.H.; Roh, C.; Lee, C.W.; Kyung, D.; Choi, S.K.; Jung, H.C.; Pan, J.G.; Kim, B.G. Bacterial surface display of GFP(uv) on Bacillus subtilis spores. J. Microbiol. Biotechnol., 2007, 17(4), 677-680.
[PMID: 18051283]
[24]
Rostami, A.; Hinc, K.; Goshadrou, F.; Shali, A.; Bayat, M.; Hassanzadeh, M.; Amanlou, M.; Eslahi, N.; Ahmadian, G. Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. Pestic. Biochem. Physiol., 2017, 140, 17-23.
[http://dx.doi.org/10.1016/j.pestbp.2017.05.008] [PMID: 28755689]
[25]
Hinc, K.; Isticato, R.; Dembek, M.; Karczewska, J.; Iwanicki, A.; Peszyńska-Sularz, G.; De Felice, M.; Obuchowski, M.; Ricca, E. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores. Microb. Cell Fact., 2010, 9(1), 2.
[http://dx.doi.org/10.1186/1475-2859-9-2] [PMID: 20082702]
[26]
Tarahomjoo, S.; Katakura, Y.; Shioya, S. New strategy for enhancement of microbial viability in simulated gastric conditions based on display of starch-binding domain on cell surface. J. Biosci. Bioeng., 2008, 105(5), 503-507.
[http://dx.doi.org/10.1263/jbb.105.503] [PMID: 18558341]
[27]
Lee, S.Y.; Choi, J.H.; Xu, Z. Microbial cell-surface display. Trends Biotechnol., 2003, 21(1), 45-52.
[http://dx.doi.org/10.1016/S0167-7799(02)00006-9] [PMID: 12480350]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy