Skip to main content
Log in

PESTA: An Elastic Motion Capture Data Retrieval Method

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Prevalent use of motion capture (MoCap) produces large volumes of data and MoCap data retrieval becomes crucial for efficient data reuse. MoCap clips may not be neatly segmented and labeled, increasing the difficulty of retrieval. In order to effectively retrieve such data, we propose an elastic content-based retrieval scheme via unsupervised posture encoding and strided temporal alignment (PESTA) in this work. It retrieves similarities at the sub-sequence level, achieves robustness against singular frames and enables control of tradeoff between precision and efficiency. It firstly learns a dictionary of encoded postures utilizing unsupervised adversarial autoencoder techniques and, based on which, compactly symbolizes any MoCap sequence. Secondly, it conducts strided temporal alignment to align a query sequence to repository sequences to retrieve the best-matching sub-sequences from the repository. Further, it extends to find matches for multiple sub-queries in a long query at sharply promoted efficiency and minutely sacrificed precision. Outstanding performance of the proposed scheme is well demonstrated by experiments on two public MoCap datasets and one MoCap dataset captured by ourselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Liu F, Zhuang Y T, Wu F, Pan Y H. 3D motion retrieval with motion index tree. Computer Vision and Image Understanding, 2003, 92(2/3): 265–284. https://doi.org/10.1016/j.cviu.2003.06.001.

    Article  Google Scholar 

  2. Deng Z G, Gu Q, Li Q. Perceptually consistent example-based human motion retrieval. In Proc. the 2009 Symposium on Interactive 3D Graphics and Games, Feb. 2009, pp.191–198. https://doi.org/10.1145/1507149.1507181.

  3. Lv N, Jiang Z F, Huang Y, Meng X X, Meenakshisundaram G, Peng J L. Generic content-based retrieval of marker-based motion capture data. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(6): 1969–1982. https://doi.org/10.1109/TVCG.2017.2702620.

    Article  Google Scholar 

  4. Jin Y, Prabhakaran B. Knowledge discovery from 3D human motion streams through semantic dimensional reduction. ACM Trans. Multimedia Computing, Communications, and Applications, 2011, 7(2): Article No. 9. https://doi.org/10.1145/1925101.1925104.

  5. Sun C, Junejo I, Foroosh H. Motion retrieval using lowrank subspace decomposition of motion volume. Computer Graphics Forum, 2011, 30(7): 1953–1962. https://doi.org/10.1111/j.1467-8659.2011.02048.x.

    Article  Google Scholar 

  6. Zhu M Y, Sun H J, Deng Z G. Quaternion space sparse decomposition for motion compression and retrieval. In Proc. the 2012 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Jul. 2012, pp.183–192. https://doi.org/10.2312/SCA/SCA12/183-192.

  7. Wang P J, Lau R W H, Pan Z G, Wang J, Song H Y. An Eigen-based motion retrieval method for real-time animation. Computers & Graphics, 2014, 38: 255–267. https://doi.org/10.1016/j.cag.2013.11.008.

    Article  Google Scholar 

  8. Xiao Q K, Wang Y, Wang H Y. Motion retrieval using weighted graph matching. Soft Computing, 2015, 19(1): 133–144. https://doi.org/10.1007/s00500-014-1237-5.

    Article  Google Scholar 

  9. Qi T, Feng Y F, Xiao J, Zhuang Y T, Yang X S, Zhang J J. A semantic feature for human motion retrieval. Computer Animation and Virtual Worlds, 2013, 24(3/4): 399–407. https://doi.org/10.1002/cav.1505.

    Article  Google Scholar 

  10. Sedmidubsky J, Budikova P, Dohnal V, Zezula P. Motion words: A text-like representation of 3D skeleton sequences. In Proc. the 42nd European Conference on Information Retrieval, Apr. 2020, pp.527–541. https://doi.org/10.1007/978-3-030-45439-5_35.

  11. Li W, Huang Y, Peng J L. Video-interfaced human motion capture data retrieval based on the normalized motion energy image representation. In Proc. the 27th International Conference on Neural Information Processing, Nov. 2020, pp.616–627. https://doi.org/10.1007/978-3-030-63830-6_52.

  12. Feng L, Shen X, Sun T, Xu X H, Pan X W. Retrieval of human motion data based on energy model. Journal of Computer-Aided Design & Computer Graphics, 2007, 19 (8): 1015–1021. (in Chinese)

  13. Xiao Q K, Li J F, Xiao Q H. Human motion capture data retrieval based on quaternion and EMD. In Proc. the 5th International Conference on Intelligent Human-machine Systems and Cybernetics, Aug. 2013, pp.517–520. https://doi.org/10.1109/IHMSC.2013.129.

  14. Huang Z W, Wan C D, Probst T, Van Gool L. Deep learning on lie groups for skeleton-based action recognition. In Proc. the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Jul. 2017, pp.6099–6108. https://doi.org/10.1109/CVPR.2017.137.

  15. Li C L, Cui Z, Zheng W M, Xu C Y, Ji R R, Yang J. Action-attending graphic neural network. IEEE Trans. Image Processing, 2018, 27(7): 3657–3670. https://doi.org/10.1109/TIP.2018.2815744.

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhu W T, Lan C L, Xing J L, Zeng W J, Li Y H, Shen L, Xie X H. Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks. In Proc. the 30th AAAI Conference on Artificial Intelligence, Feb. 2016, pp.3697-3703. https://doi.org/10.1609/aaai.v30i1.10451.

  17. Du Y, Wang W, Wang L. Hierarchical recurrent neural network for skeleton based action recognition. In Proc. the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2015, pp.1110–118. https://doi.org/10.1109/CVPR.2015.7298714.

  18. Holden D, Saito J, Komura T, Joyce T. Learning motion manifolds with convolutional autoencoders. In Proc. the SIGGRAPH Asia 2015 Technical Briefs, Nov. 2015, Article No. 18. https://doi.org/10.1145/2820903.2820918.

  19. Wang Y Y, Neff M. Deep signatures for indexing and retrieval in large motion databases. In Proc. the 8th ACM SIGGRAPH Conference on Motion in Games, Nov. 2015, pp.37–45. https://doi.org/10.1145/2822013.2822024.

  20. Sedmidubsky J, Elias P, Zezula P. Effective and efficient similarity searching in motion capture data. Multimedia Tools and Applications, 2018, 77(10): 12073–12094. https://doi.org/10.1007/s11042-017-4859-7.

    Article  Google Scholar 

  21. Lv N, Wang Y, Feng Z Q, Peng J L. Deep hashing for motion capture data retrieval. In Proc. the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Jun. 2021, pp.2215–2219. https://doi.org/10.1109/ICASSP39728.2021.9413505.

  22. Sakamoto Y, Kuriyama S, Kaneko T. Motion map: Image-based retrieval and segmentation of motion data. In Proc. the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Aug. 2004, pp.259–266. https://doi.org/10.1145/1028523.1028557.

  23. Krüuger B, Tautges J, Weber A, Zinke A. Fast local and global similarity searches in large motion capture databases. In Proc. the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Jul. 2010.

  24. Choi M G, Yang K, Igarashi T, Mitani J, Lee J. Retrieval and visualization of human motion data via stick figures. Computer Graphics Forum, 2012, 31(7): 2057–2065. https://doi.org/10.1111/j.1467-8659.2012.03198.x.

    Article  Google Scholar 

  25. Kapadia M, Chiang I K, Thomas T, Badler N I, Kider J T. Efficient motion retrieval in large motion databases. In Proc. the 2013 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Mar. 2013, pp.19–28. https://doi.org/10.1145/2448196.2448199.

  26. Xiao J, Tang Z P, Feng Y F, Xiao Z D. Sketch-based human motion retrieval via selected 2D geometric posture descriptor. Signal Processing, 2015, 113: 1–8. https://doi.org/10.1016/j.sigpro.2015.01.004.

  27. Sedmidubsky J, Elias P, Zezula P. Searching for variable-speed motions in long sequences of motion capture data. Information Systems, 2019, 80: 148–158. https://doi.org/10.1016/j.is.2018.04.002.

    Article  Google Scholar 

  28. Kovar L, Gleicher M. Automated extraction and parameterization of motions in large data sets. ACM Trans. Graphics, 2004, 23(3): 559–568. https://doi.org/10.1145/1015706.1015760.

    Article  Google Scholar 

  29. Müller M, Röder T, Clausen M. Efficient content-based retrieval of motion capture data. ACM Trans. Graphics, 2005, 24(3): 677–685. https://doi.org/10.1145/1073204.1073247.

    Article  Google Scholar 

  30. Müller M, Röder T. Motion templates for automatic classification and retrieval of motion capture data. In Proc. the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Sept. 2006, pp.137–146. https://doi.org/10.2312/SCA/SCA06/137-146.

  31. Forbes K, Fiume E. An efficient search algorithm for motion data using weighted PCA. In Proc. the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Jul. 2005, pp.67–76. https://doi.org/10.1145/1073368.1073377.

  32. Wu S Y, Xia S H, Wang Z Q, Li C P. Efficient motion data indexing and retrieval with local similarity measure of motion strings. The Visual Computer, 2009, 25(5/6/7): 499–508. https://doi.org/10.1007/s00371-009-0345-1.

    Article  Google Scholar 

  33. Gupta A, He J, Martinez J, Little J J, Woodham R J. Efficient video-based retrieval of human motion with flexible alignment. In Proc. the 2016 IEEE Winter Conference on Applications of Computer Vision, Mar. 2016. https://doi.org/10.1109/WACV.2016.7477588.

  34. Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B. Adversarial autoencoders. arXiv: 1511.05644, 2015. https://arxiv.org/abs/1511.05644, Sept. 2023.

  35. Jiang Z, Huang Y, Peng J. Recent advances in content-based motion capture data retrieval. International Journal of Electrical Engineering, 2018, 25(2): 47–56. https://doi.org/10.6329/CIEE.201804-25(2).0002.

    Article  Google Scholar 

  36. Li Y, Fermuller C, Aloimonos Y, Ji H. Learning shift-invariant sparse representation of actions. In Proc. the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun. 2010, pp.2630–2637. https://doi.org/10.1109/CVPR.2010.5539977.

  37. Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A C, Bengio Y. Generative adversarial nets. In Proc. the 27th International Conference on Neural Information Processing Systems, Dec. 2014, pp.2672–2680. https://doi.org/10.1145/3422622.

  38. Manber U, Myers G. Suffix arrays: A new method for online string searches. SIAM Journal on Computing, 1993, 22(5): 935–948. https://doi.org/10.1137/0222058.

    Article  MathSciNet  MATH  Google Scholar 

  39. Müller M, Röder T, Clausen M, Eberhardt B, Krüger B, Weber A. Documentation MoCap database HDM05. Computer Graphics Technical Reports CG-2007-2, Universität Bonn, 2007. https://cg.cs.uni-bonn.de/backend/v1/files/publications/cg-2007-2.pdf, July 2023.

  40. Yang W, Ouyang W L, Wang X L, Ren J, Li H S, Wang X G. 3D human pose estimation in the wild by adversarial learning. In Proc. the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp.5255–5264. https://doi.org/10.1109/CVPR.2018.00551.

  41. Sun X, Xiao B, Wei F Y, Liang S, Wei Y C. Integral human pose regression. In Proc. the 15th European Conference on Computer Vision, Sept. 2018, pp.536–553. https://doi.org/10.1007/978-3-030-01231-1_33.

  42. Zhao L, Peng X, Tian Y, Kapadia M, Metaxas D N. Semantic graph convolutional networks for 3D human pose regression. In Proc. the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2019, pp.3425–3435. https://doi.org/10.1109/CVPR.2019.00354.

  43. Li S C, Ke L, Pratama K, Tai Y W, Tang C K, Cheng K T. Cascaded deep monocular 3D human pose estimation with evolutionary training data. In Proc. the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2020, pp.6173–6183. https://doi.org/10.1109/CVPR42600.2020.00621.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Liang Peng.

Supplementary Information

ESM 1

(PDF 140 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, ZF., Li, W., Huang, Y. et al. PESTA: An Elastic Motion Capture Data Retrieval Method. J. Comput. Sci. Technol. 38, 867–884 (2023). https://doi.org/10.1007/s11390-023-3140-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-023-3140-y

Keywords

Navigation