Skip to main content
Log in

Real-Time Underwater Image Enhancement Using Adaptive Full-Scale Retinex

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Current Retinex-based image enhancement methods with fixed scale filters cannot adapt to situations involving various depths of field and illuminations. In this paper, a simple but effective method based on adaptive full-scale Retinex (AFSR) is proposed to clarify underwater images or videos. First, we design an adaptive full-scale filter that is guided by the optical transmission rate to estimate illumination components. Then, to reduce the computational complexity, we develop a quantitative mapping method instead of non-linear log functions for directly calculating the reflection component. The proposed method is capable of real-time processing of underwater videos using temporal coherence and Fourier transformations. Compared with eight state-of-the-art clarification methods, our method yields comparable or better results for image contrast enhancement, color-cast correction and clarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Jaffe J S. Underwater optical imaging: The past, the present, and the prospects. IEEE Journal of Oceanic Engineering, 2015, 40(3): 683–700. https://doi.org/10.1109/JOE.2014.2350751.

    Article  Google Scholar 

  2. Hou W L, Gray D J, Weidemann A D, Fournier G R, Forand J L. Automated underwater image restoration and retrieval of related optical properties. In Proc. the 2017 IEEE International Geoscience and Remote Sensing Symposium, Jul. 2007, pp.1889–1892. https://doi.org/10.1109/IGARSS.2007.4423193.

  3. Wells W H. Loss of resolution in water as a result of multiple small-angle scattering. Journal of the Optical Society of America, 1969, 59(6): 686–691. https://doi.org/10.1364/JOSA.59.000686.

    Article  Google Scholar 

  4. Xiang W D, Yang P, Wang S, Xu B, Liu H. Underwater image enhancement based on red channel weighted compensation and gamma correction model. Opto-Electronic Advances, 2018, 1(10): 9. https://doi.org/10.29026/oea.2018.180024.

    Article  Google Scholar 

  5. Galdran A, Pardo D, Picón A, Alvarez-Gila A. Automatic red-channel underwater image restoration. Journal of Visual Communication and Image Representation, 2015, 26: 132–145. https://doi.org/10.1016/j.jvcir.2014.11.006.

    Article  Google Scholar 

  6. Chiang J Y, Chen Y C. Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Processing, 2012, 21(4): 1756–1769. https://doi.org/10.1109/tip.2011.2179666.

    Article  MathSciNet  MATH  Google Scholar 

  7. He K M, Sun J, Tang X O. Single image haze removal using dark channel prior. IEEE Trans. Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. https://doi.org/10.1109/TPAMI.2010.168.

  8. Zhang M H, Peng J H. Underwater image restoration based on a new underwater image formation model. IEEE Access, 2018, 6: 58634–58644. https://doi.org/10.1109/ACCESS.2018.2875344.

    Article  Google Scholar 

  9. Rahman Z, Jobson D J, Woodell G A. Multi-scale retinex for color image enhancement. In Proc. the 3rd IEEE International Conference on Image Processing, Sept. 1996, pp.1003–1006. https://doi.org/10.1109/ICIP.1996.560995.

  10. Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Processing, 1997, 6(7): 965–976. https://doi.org/10.1109/83.597272.

    Article  Google Scholar 

  11. Rahman Z U, Jobson D J, Woodell G A. Retinex processing for automatic image enhancement. Journal of Electronic Imaging, 2004, 13(1): 100–110. https://doi.org/10.1117/1.1636183.

    Article  Google Scholar 

  12. Hsu E, Mertens T, Paris S, Avidan S, Durand F. Light mixture estimation for spatially varying white balance. ACM Trans. Graphics, 2008, 27(3): 1–7. https://doi.org/10.1145/1360612.1360669.

    Article  Google Scholar 

  13. Finlayson G, Trezzi E. Shades of gray and colour constancy. In Proc. the 12th Color Imaging Conference: Color Science and Engineering Systems, Technologies, Applications, Nov. 2004, pp.37–41. https://doi.org/10.2352/CIC.2004.12.1.art00008.

  14. Fu X Y, Sun Y, Liwang M H, Huang Y, Zhang X P, Ding X H. A novel retinex based approach for image enhancement with illumination adjustment. In Proc. the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, May 2014, pp.1190–1194. https://doi.org/10.1109/ICASSP.2014.6853785.

  15. Ancuti C, Ancuti C O, Haber T, Bekaert P. Enhancing underwater images and videos by fusion. In Proc. the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2012, pp.81–88. https://doi.org/10.1109/CVPR.2012.6247661.

  16. Zosso D, Tran G, Osher S. A unifying retinex model based on non-local differential operators. In Proc. the 2013 SPIE 8657, Computational Imaging XI, Feb. 2013, Article No. 865702. https://doi.org/10.1117/12.2008839.

  17. Han M, Lyu Z, Qiu T, Xu M L. A review on intelligence dehazing and color restoration for underwater images. IEEE Trans. Systems, Man, and Cybernetics: Systems, 2020, 50(5): 1820–1832. https://doi.org/10.1109/TSMC.2017.2788902.

    Article  Google Scholar 

  18. Li J, Skinner K A, Eustice R M, Johnson-Roberson M. WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robotics and Automation Letters, 2018, 3(1): 387–394. https://doi.org/10.1109/LRA.2017.2730363.

    Article  Google Scholar 

  19. Berman D, Levy D, Avidan S, Treibitz T. Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans. Pattern Analysis and Machine Intelligence, 2021, 43(8): 2822–2837. https://doi.org/10.1109/TPAMI.2020.2977624.

  20. Li Y J, Lu H M, Zhang L F, Li J R, Serikawa S. Real-time visualization system for deep-sea surveying. Mathematical Problems in Engineering, 2014, 2014: 437071. https://doi.org/10.1155/2014/437071.

  21. Sun X, Liu L P, Li Q, Dong J Y, Lima E, Yin R Y. Deep pixel-to-pixel network for underwater image enhancement and restoration. IET Image Processing, 2019, 13(3): 469–474. https://doi.org/10.1049/iet-ipr.2018.5237.

    Article  Google Scholar 

  22. Fu X Y, Zhuang P X, Huang Y, Liao Y H, Zhang X P, Ding X H. A retinex-based enhancing approach for single underwater image. In Proc. the 2014 IEEE International Conference on Image Processing, Oct. 2014, pp.4572–4576. https://doi.org/10.1109/ICIP.2014.7025927.

  23. Tarel J P, Hautière N. Fast visibility restoration from a single color or gray level image. In Proc. the 12th IEEE International Conference on Computer Vision, Sept. 29–Oct. 2, 2009, pp.2201–2208. https://doi.org/10.1109/ICCV.2009.5459251.

  24. Kaplan S, Zhu Y M. Full-dose pet image estimation from low-dose pet image using deep learning: A pilot study. Journal of Digital Imaging, 2019, 32(5): 773–778. https://doi.org/10.1007/s10278-018-0150-3.

    Article  Google Scholar 

  25. Liu Y F, Jaw D W, Huang S C, Hwang J N. DesnowNet: Context-aware deep network for snow removal. IEEE Trans. Image Processing, 2018, 27(6) 3064–3073. https://doi.org/10.1109/TIP.2018.2806202.

    Article  MathSciNet  Google Scholar 

  26. Zhou Y, Wu Q, Yan K M, Feng L Y, Xiang W. Underwater image restoration using color-line model. IEEE Trans. Circuits and Systems for Video Technology, 2019, 29(3): 907–911. https://doi.org/10.1109/TCSVT.2018.2884615.

    Article  Google Scholar 

  27. Zhang J Y, Chen Y, Huang X X. Edge detection of images based on improved Sobel operator and genetic algorithms. In Proc. the 2009 International Conference on Image Analysis and Signal Processing, Apr. 2009, pp.31–35. https://doi.org/10.1109/IASP.2009.5054605.

  28. Shahid M, Rossholm A, Lövström B, Zepernick H J. Noreference image and video quality assessment: A classification and review of recent approaches. EURASIP Journal on Image and Video Processing, 2014, 40(2014): Article No. 40. https://doi.org/10.1186/1687-5281-2014-40.

  29. Rahman Z U, Jobson D J, Woodell G A, Hines G D. Image enhancement, image quality, and noise. In Proc. the 2005 SPIE 5907, Photonic Devices and Algorithms for Computing VII, Sept. 2005, Article No. 59070N. https://doi.org/10.1117/12.619460.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Suo Fan.

Supplementary Information

ESM 1

(PDF 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XG., Fan, XS. & Liu, YL. Real-Time Underwater Image Enhancement Using Adaptive Full-Scale Retinex. J. Comput. Sci. Technol. 38, 885–898 (2023). https://doi.org/10.1007/s11390-022-1115-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-022-1115-z

Keywords

Navigation