Skip to main content
Log in

Boundedness of the conformal hyperboloidal energy for a wave-Klein–Gordon model

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider the global evolution problem for a model which couples together a nonlinear wave equation and a nonlinear Klein–Gordon equation, and was introduced by P.G. LeFloch and Y. Ma and, independently, by Q. Wang. By revisiting the Hyperboloidal Foliation Method, we establish that a weighted energy of the solutions remains (almost) bounded for all times. The new ingredient in the proof is a hierarchy of fractional Morawetz energy estimates (for the wave component of the system) which is defined from two conformal transformations. The optimal case for these energy estimates corresponds to using the scaling vector field as a multiplier for the wave component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. After normalization of the Klein–Gordon mass.

  2. It will be clear from the context whether u denotes the Minkowski optical function \(t- r\) or the wave component of (1.2).

  3. In the high-order energy bound for the wave equation, the exponent \(\max (1,k)) \delta \) provides a small growth of order \(\delta \) for all k, and we refer the reader to Appendix A in [23].

References

  1. A. Bachelot, Problème de Cauchy global pour des systèmes de Dirac-Klein-Gordon, Ann. Inst. Henri Poincaré 48 (1988), 387–422.

    MathSciNet  Google Scholar 

  2. L. Bigorgne, D. Fajman, J. Joudioux, J. Smulevici, and M. Thaller, Asymptotic stability of Minkowski spacetime with non-compactly supported massless Vlasov matter, Arch. Ration. Mech. Anal. 242 (2021), 1–147.

    Article  MathSciNet  Google Scholar 

  3. S. Dong, P.G. LeFloch, and Z. Wyatt, Global evolution of the U(1) Higgs Boson: nonlinear stability and uniform energy bounds, Annals Henri Poincaré 22 (2021), 677–713.

    Article  MathSciNet  Google Scholar 

  4. S. Dong, P.G. LeFloch, and Z. Lei, The top-order energy of quasilinear wave equations in two space dimensions is uniformly bounded, Fundamental Research (2023).

  5. D. Fajman, J. Joudioux, and J. Smulevici, The stability of the Minkowski space for the Einstein-Vlasov system, Anal. PDE 14 (2021), 425–531.

    Article  MathSciNet  Google Scholar 

  6. V. Georgiev, Decay estimates for the Klein-Gordon equation, Comm. Partial Differential Equa. 17 (1992), 1111–1139.

    Article  MathSciNet  Google Scholar 

  7. P. Hintz and A. Vasy, Stability of Minkowski space and polyhomogeneity of the metric, Ann. PDE 6 (2020), no. 1, Paper No. 2, 146 pp.

  8. L. Hörmander, Lectures on nonlinear hyperbolic differential equations, Springer Verlag, Berlin, 1997.

    Google Scholar 

  9. C. Huneau and A. Stingo, Global well-posedness for a system of quasilinear wave equations on a product space, Preprint arXiv:2110.13982.

  10. M. Ifrim and A. Stingo, Almost global well-posedness for quasilinear strongly coupled wave-Klein-Gordon systems in two space dimensions, Preprint arXiv:1910.12673.

  11. A.D. Ionescu and B. Pausader, Global solutions of quasi-linear systems of Klein-Gordon equations in 3D, J. Eur. Math. Soc. 16 (2015), 2355–2431.

    Article  Google Scholar 

  12. A.D. Ionescu and B. Pausader, On the global regularity for a wave-Klein-Gordon coupled system, Acta Math. Sin. 35 (2019), 933–986.

    Article  MathSciNet  Google Scholar 

  13. A.D. Ionescu and B. Pausader, The Einstein-Klein-Gordon coupled system: global stability of the Minkowski solution, Princeton University Press, Princeton, NJ, 2021.

    Google Scholar 

  14. S. Katayama, Global existence for coupled systems of nonlinear wave and Klein-Gordon equations in three space dimensions, Math. Z. 270 (2012), 487–513.

    Article  MathSciNet  Google Scholar 

  15. S. Katayama, Asymptotic pointwise behavior for systems of semi-linear wave equations in three space dimensions, J. Hyperbolic Differ. Equ. 9 (2012), 263–323.

    Article  MathSciNet  Google Scholar 

  16. C. Kauffman and H. Lindblad, Global stability of Minkowski space for the Einstein-Maxwell-Klein-Gordon system in generalized wave coordinates, Preprint arXiv:2109.03270.

  17. S. Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four spacetime dimensions, Comm. Pure Appl. Math. 38 (1985), 631–641.

    Article  MathSciNet  Google Scholar 

  18. S. Klainerman, Remarks on the global Sobolev inequalities in the Minkowski space \(\mathbb{R}^{n+1}\), Comm. Pure Appl. Math. 40 (1987), 111–117.

  19. J. Krieger, J. Sterbenz, and D. Tataru, Global well-posedness for the Maxwell-Klein-Gordon equation in 4+1 dimensions: small energy, Duke Math. J. 164 (2015), 973–1040.

    Article  MathSciNet  Google Scholar 

  20. P.G. LeFloch and Y. Ma, The hyperboloidal foliation method, World Scientific Press, Singapore, 2014.

    Google Scholar 

  21. P.G. LeFloch and Y. Ma, The global nonlinear stability of Minkowski space for self-gravitating massive fields. The wave-Klein-Gordon model Comm. Math. Phys. 346, 603–665 (2016)

    Article  MathSciNet  Google Scholar 

  22. P.G. LeFloch and Y. Ma, Nonlinear stability of self-gravitating massive fields, preprint arXiv:1712.10045.

  23. P.G. LeFloch and Y. Ma, The global nonlinear stability of Minkowski space for self-gravitating massive fields, World Scientific Press, Singapore, 2018.

    Google Scholar 

  24. P.G. LeFloch and Y. Ma, Einstein-Klein-Gordon spacetimes in the harmonic near-Minkowski regime, Port. Math. 79 (2022), 343–393.

    Article  MathSciNet  Google Scholar 

  25. P.G. LeFloch and Y. Ma, Nonlinear stability of self-gravitating massive fields. A wave-Klein-Gordon model Class. Quantum Grav. 40 (2023), 154001.

    Article  Google Scholar 

  26. P.G. LeFloch and C.-H. Wei, Boundedness of the total energy of relativistic membranes evolving in a curved spacetime, J. Differential Equations 265 (2018), 312–331.

    Article  MathSciNet  Google Scholar 

  27. H. Lindblad and I. Rodnianski, The global stability of Minkowski spacetime in harmonic gauge, Ann. of Math. 171 (2010), 1401–1477.

    Article  MathSciNet  Google Scholar 

  28. H. Lindblad and A. Soffer, A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation, Letters in Mathematical Physics 73 (2005), 249–258.

    Article  MathSciNet  Google Scholar 

  29. H. Lindblad and C.D. Sogge, Restriction theorems and semilinear Klein-Gordon equations in (1 + 3)-dimensions, Duke Math. Jour. 85 (1996), 227–252.

    Article  MathSciNet  Google Scholar 

  30. H. Lindblad and J. Sterbenz, Global stability for charged-scalar fields on Minkowski space, Int. Math. Res. Pap. 109 (2006), 52976.

    MathSciNet  Google Scholar 

  31. H. Lindblad and M. Taylor, Global stability of Minkowski space for the Einstein–Vlasov system in the harmonic gauge, Preprint arXiv:1707.06079.

  32. S.-J. Oh and D.Tataru, Energy dispersed solutions for the (4+1)-dimensional Maxwell-Klein-Gordon equation, Amer. J. Math. 140 (2018), 1–82.

    Article  MathSciNet  Google Scholar 

  33. J. Oliver, A vector field method for non-trapping, radiating spacetimes, J. Hyper. Diff. Equa. 13 (2016), 735–790.

    Article  MathSciNet  Google Scholar 

  34. J. Oliver and J. Sterbenz, A vector field method for radiating black hole spacetimes, Anal. PDE 13 (2020), 29–92.

    Article  MathSciNet  Google Scholar 

  35. T. Ozawa, K. Tsutaya, and Y. Tsutsumi, Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Ann. 313 (1999), 127–140.

    Article  MathSciNet  Google Scholar 

  36. D. Tataru, Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation, Trans. Amer. Math. Soc. 353 (2001), 795–807.

    Article  MathSciNet  Google Scholar 

  37. Y. Tsutsumi, Stability of constant equilibrium for the Maxwell-Higgs equations, Funkcial. Ekvac. 46 (2003), 41-62.

    Article  MathSciNet  Google Scholar 

  38. Y. Tsutsumi, Global solutions for the Dirac-Proca equations with small initial data in 3+1 space time dimensions, J. Math. Anal. Appl. 278 (2003), 485–499.

    Article  MathSciNet  Google Scholar 

  39. Q. Wang, An intrinsic hyperboloid approach for Einstein Klein-Gordon equations, J. Differential Geom. 115 (2020), 27–109.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author (PLF) was partially supported by the ERC-ITN grant 642768, ANR grant Einstein-PPF (Einstein constraints: past, present, and future), and ERC-MSCA grant Einstein-Waves (Einstein gravity and nonlinear waves: physical models, numerical simulations, and data analysis). Part of this work was done when the first author was visiting the School of Mathematical Sciences at Fudan University, Shanghai, and the Courant Institute of Mathematical Sciences, New York University. The first author (PLF) is also very grateful to the third author (YT) for the opportunity of visiting Kyoto University (where this paper was completed) as an international research fellow of the Japan Society for the Promotion of Science (JSPS). The second author (JO) gratefully acknowledges support from Institut Henri Poincaré, Paris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe G. LeFloch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Proof of Technical Results

A Proof of Technical Results

Proof of Lemma 4.1

To establish the Eq. (4.4) we expand \(X^{i} = {\overline{X}}^i+ \omega ^i \omega _j X^j\)

$$\begin{aligned} \partial ^B_\gamma X^\gamma= & {} \partial ^B_u X^u + \partial ^B_i(\omega ^{i})\omega _{j} X^j + \omega ^{i}\partial ^B_i(\omega ^{i}X^j) + \partial ^B_i\overline{X}^i \\= & {} \partial ^B_u X^u + \frac{2X^{r}}{r}+ \partial ^B_r X^r+ \partial ^B_i\overline{X}^i. \end{aligned}$$

Using this together with the basic identity \({}^{(X)}{\widehat{\pi }}^{\alpha \beta } = - {\mathcal {L}}_{X} \eta ^{-1}- \eta ^{\alpha \beta }\partial _\gamma X^\gamma \), in (3.10) gives the result. To calculate all the components of \({\mathcal {A}}\) we use Eq. (4.4) together with the Eq. (3.10) to get

$$\begin{aligned} {\mathcal {A}}^{\alpha \beta }= & {} \frac{1}{2}\Big ( \partial _\gamma ^B(X^\alpha ) \eta ^{\gamma \beta } + \partial _\gamma ^B(X^\beta ) \eta ^{\alpha \gamma } -X( \eta ^{\alpha \beta }) \\{} & {} -({\partial _u^B} X^u + \partial _r^B X^r )\eta ^{\alpha \beta } \Big ) - \Big ( \frac{X^r}{r}-X \ln \Omega ) \Big )\eta ^{\alpha \beta }. \end{aligned}$$

We now compute all the components of this tensor. For \({\mathcal {A}}^{uu}\) we use the fact that \(\eta ^{u\alpha } =-1\) if \(\alpha =r\), and \(\eta ^{u\alpha } =0\) otherwise. This gives

$$\begin{aligned} {\mathcal {A}}^{uu}&= \frac{1}{2}\Big ( \partial _\gamma ^B(X^u) \eta ^{\gamma u} + \partial _\gamma ^B(X^u) \eta ^{\gamma u} -X( \eta ^{uu}) -({\partial _u^B} X^u + \partial _r^B X^r )\eta ^{uu} \Big ) - \Big ( \frac{X^r}{r}\\ {}&\quad -X \ln \Omega \Big ) )\eta ^{uu} = - \partial _r^B X^u. \end{aligned}$$

For \({\mathcal {A}}^{rr}\) we use the fact that \(\eta ^{ur} =-1\), \(\eta ^{rr} =1\), and \(\eta ^{r\alpha } =0\) otherwise. This yields

$$\begin{aligned} {\mathcal {A}}^{rr}&= \frac{1}{2}\big ( \partial _\gamma ^B(X^r) \eta ^{\gamma r} + \partial _\gamma ^B(X^r) \eta ^{\gamma r} -X( \eta ^{rr}) -({\partial _u^B} X^u + \partial _r^B X^r )\eta ^{rr} \big ) - \Big ( \frac{X^r}{r}-X \ln \Omega \Big ) )\eta ^{rr} \\&= \frac{1}{2}( 2\partial _r^BX^r -2\partial _u^BX^r )-({\partial _u^B} X^u + \partial _r^B X^r ) \big ) - \Big ( \frac{X^r}{r}-X \ln \Omega \Big ) ) \\&= \frac{1}{2}\partial _r^B X^r - \frac{1}{2}{\partial _u^B} X^u- {\partial _u^B} X^r - \Big ( \frac{X^r}{r}-X \ln \Omega \Big ) ). \end{aligned}$$

Similarly, for \({\mathcal {A}}^{ur}\) we get

$$\begin{aligned} {\mathcal {A}}^{ur}&= \frac{1}{2}\big ( \partial _\gamma ^B(X^u) \eta ^{\gamma r} + \partial _\gamma ^B(X^r) \eta ^{\gamma u} -X( \eta ^{ur}) -({\partial _u^B} X^u + \partial _r^B X^r )\eta ^{ur} \big ) - \Big ( \frac{X^r}{r}-X \ln \Omega \Big ) )\eta ^{ur} \\&= \frac{1}{2} \Big (- \partial _u^B X^u+ \partial _r^B X^u - \partial _r^B X^r +{\partial _u^B} X^u + \partial _r^B X^r \Big ) +\Big ( \frac{X^r}{r}-X \ln \Omega \Big ) \\&\quad = \frac{1}{2}\partial _r^B X^u+\Big ( \frac{X^r}{r}-X \ln \Omega \Big ). \end{aligned}$$

For \({\mathcal {A}}^{bc}\) we use the hypothesis that our vector field is radial and get

$$\begin{aligned} {\mathcal {A}}^{bc}&= \frac{1}{2}\Big ( \partial _\gamma ^B(X^b) \eta ^{\gamma c} + \partial _\gamma ^B(X^c) \eta ^{\gamma b} -X( \eta ^{bc}) -({\partial _u^B} X^u + \partial _r^B X^r \Big )\eta ^{bc} \big ) - \Big ( \frac{X^r}{r}-X \ln \Omega \Big ) )\eta ^{bc} \\&= \Big (\frac{X^{r}}{r} - \frac{1}{2}{\partial _u^B} X^u- \frac{1}{2}\partial _r^B X^r - \Big ( \frac{X^r}{r}-X \ln \Omega \Big ) \Big )\frac{\delta ^{bc}}{r^{2}}. \end{aligned}$$

\(\square \)

Proof of Lemma 4.2

By Lemma 4.3, the conformal potential V identically vanishes for the choices of weight \({}^{I}\Omega \) and \({}^{I\!I}\Omega \). Therefore we have \( Q_{\alpha \beta }[\Phi ]= \widetilde{Q}_{\alpha \beta }[\Phi ], \) where Q is energy-momentum tensor in Eq. (3.1). Expanding this tensor in polar Bondi coordinates and using the Eq. (4.1) for the metric coefficients gives:

$$\begin{aligned}&Q_{uu}[\Phi ] = (\partial ^B_{u}\Phi )^{2}+ \frac{1}{2} (\partial ^B_{r}\Phi )^{2} + \frac{1}{2}| {\, {/\!\!\! \nabla }} \Phi |^{2}- \partial ^B_{u}\Phi \partial ^B_{r}\Phi , \\&Q_{ur}[\Phi ] = \frac{1}{2} (\partial ^B_{r}\Phi )^{2} + \frac{1}{2}| {\, {/\!\!\! \nabla }} \Phi |^{2}, \qquad Q_{rr}[\Phi ] = (\partial ^B_{r}\Phi )^{2}. \end{aligned}$$

Since the rescaled normal is \(N{'} =(1-{r \over t} )\partial ^B_{u}+ {r \over t} \partial ^B_{r}\) we use these identities to get:

$$\begin{aligned}&{}^{(X)}\!\widetilde{P}_{\alpha } N{'}^\alpha =X^{u}(1-{r \over t} )Q_{uu}[\Phi ]+X^{u}{r \over t} Q_{ur}[\Phi ] +X^{r}(1-{r \over t} )Q_{ru}[\Phi ]\\ {}&\quad +X^{r}{r \over t} Q_{rr}[\Phi ] + \frac{\Lambda }{\Omega ^2} {\mathcal {B}}\Phi ^2\\&=X^{u}\big [(1-{r \over t} )\big ((\partial ^B_{u}\Phi )^2+ \frac{1}{2}(\partial ^B_{r}\Phi )^2+ \frac{1}{2}| {\, {/\!\!\! \nabla }} \Phi |^2 - \partial ^B_u\Phi \partial _r^B\Phi \big ) +{r \over t} \big (\frac{1}{2}(\partial ^B_{r}\Phi )^{2} + \frac{1}{2}| {\, {/\!\!\! \nabla }} \Phi |^{2} \big )\big ] \\&\quad + X^{r}\big [(1-{r \over t} )(\frac{1}{2} (\partial ^B_{r}\Phi )^{2} + \frac{1}{2}| {\, {/\!\!\! \nabla }} \Phi |^{2})+ {r \over t} (\partial ^B_{r}\Phi )^{2} \big ]+ \frac{\Lambda }{\Omega ^2} {\mathcal {B}}\Phi ^2. \end{aligned}$$

Combining terms yields the Eq. (4.6) immediately. To prove a coercive lower bound we apply Young inequality with \(\epsilon \) to the unsigned term \(- \partial ^B_u\Phi \partial _r^B\Phi \) in the second equation. This gives us:

$$\begin{aligned} {}^{(X)}\! \widetilde{P}_{\alpha } N{'}^\alpha&\ge X^{u}(1-{r \over t} ) \big [(1- \frac{1}{2\epsilon ^{2}})(\partial ^B_{u}\Phi )^2\nonumber \\&\quad + (\frac{1}{2}- \frac{1}{2}\epsilon ^{2})(\partial ^B_{r}\Phi )^2\big ] + \frac{1}{2}X^{u}({r \over t} (\partial ^B_{r}\Phi )^2+| {\, {/\!\!\! \nabla }} \Phi |^2) \nonumber \\&\qquad \qquad + \frac{1}{2}X^{r}\big [(1+ {r \over t} ) (\partial ^B_{r}\Phi )^{2} +(1-{r \over t} )| {\, {/\!\!\! \nabla }} \Phi |^{2}) \big ]+ \frac{\Lambda }{\Omega ^2} {\mathcal {B}}\Phi ^2 . \end{aligned}$$
(A.1)

Choosing \(\epsilon \) satisfying the property \(\frac{1}{2}<\epsilon ^{2}<1\) and using the positivity of \(X^{u}\) yields the coercive bound

$$\begin{aligned}&{}^{(X)}\! \widetilde{P}_{\alpha } N{'}^\alpha \gtrsim _{\epsilon } X^{u}(1-{r \over t} ) (\partial ^B_{u}\Phi )^2 + \big (X^{u}+X^{r}(1+ {r \over t} )\big )(\partial ^B_{r}\Phi )^2\\&\quad + \big (X^{u}+X^{r}(1-{r \over t} )\big )| {\, {/\!\!\! \nabla }} \Phi |^2 + \frac{\Lambda }{\Omega ^2} {\mathcal {B}}\Phi ^2, \end{aligned}$$

where the implicit constant depends only on \(\epsilon \). The upper bound follows trivially from applying Young inequality to the right-hand side of the Eq. (4.6). This completes the derivation of (4.8). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LeFloch, P.G., Oliver, J. & Tsutsumi, Y. Boundedness of the conformal hyperboloidal energy for a wave-Klein–Gordon model. J. Evol. Equ. 23, 75 (2023). https://doi.org/10.1007/s00028-023-00925-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-023-00925-8

Navigation