Skip to main content
Log in

Quercetin improved hepatic circadian rhythm dysfunction in middle-aged mice fed with vitamin D-deficient diet

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

We aimed to determine whether quercetin is capable of improving circadian rhythm and metabolism disorder under vitamin D-deficient condition. Middle-aged mice were randomly divided into four groups, namely, control (CON), vitamin D-deficient diet (VDD), quercetin (Q), and quercetin intervention in vitamin D-deficient diet (VDQ), with a total of 12 weeks’ intervention. Mice were sacrificed at zeitgeber time1 (ZT1) and ZT13 time points. At ZT1, circadian locomotor output cycle kaput (CLOCK) protein expression from VDD, Q, and VDQ groups; CRY1 from Q group; and CRY2 from VDD group were significantly lower compared to CON group. The mRNA expression of Sirt1, Bmal1, Clock, Cry1, and Cry2 in VDQ groups, also Bmal1, Clock, and Cry1 from Q group, were significantly decreased compared to CON group. At ZT13, compared to CON group, fasting insulin and homeostasis model assessment-insulin resistance (HOMA-IR) were higher in VDD group; BMAL1 was significantly increased, while CLOCK and CRY1 protein were significantly decreased from VDD group; CLOCK protein from VDQ group was significantly higher compared to CON, VDD, and Q groups, and also, BMAL1 protein expression from VDQ group was elevated compared to CON group. The mRNA expression of Bmal1, Clock, Per2, Cry1, and Cry2 in VDQ groups were significantly increased compared to CON groups. The mRNA expression of Bmal1 from VDQ group was decreased compared to both VDD and Q group. In conclusion, vitamin D-deficient diet resulted in a disordered liver circadian rhythm, and quercetin improved the hepatic circadian desynchronization. Quercetin supplementation might be effective for balancing circadian rhythm under vitamin D-deficient condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

The area under the curve

BMAL1:

Brain and Muscle-Arnt-Like 1

CLOCK:

Circadian locomotor output cycles kaput

Cry:

Cryptochrome

EE:

Energy expenditure

FOXO1:

Forkhead box protein O1

HOMA-IR:

Homeostasis model assessment-insulin resistance

ICR:

The Institute of Cancer Research

NAFLD:

Non-alcoholic fatty liver disease

Per:

Period

RER:

Respiratory exchange ratio

SCN:

Suprachiasmatic nucleus

SIRT1:

Silent information regulator 2-related enzyme 1

VDR:

Vitamin D receptor

ZT:

Zeitgeber time

25(OH)D:

25-Hydroxyvitamin D

References

  1. Berretta M, Quagliariello V, Bignucolo A, Facchini S, Maurea N, Di Francia R, Fiorica F, Sharifi S, Bressan S, Richter SN, Camozzi V, Rinaldi L, Scaroni C, Montopoli M (2022) The multiple effects of vitamin D against chronic diseases: from reduction of lipid peroxidation to updated evidence from clinical studies. Antioxidants (Basel) 11. https://doi.org/10.3390/antiox11061090

  2. Lontchi-Yimagou E, Kang S, Goyal A, Zhang K, You JY, Carey M, Jain S, Bhansali S, Kehlenbrink S, Guo P, Rosen ED, Kishore P, Hawkins M (2020) Insulin-sensitizing effects of vitamin D repletion mediated by adipocyte vitamin D receptor: studies in humans and mice. Mol Metab 42:101095. https://doi.org/10.1016/j.molmet.2020.101095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barchetta I, Cimini FA, Chiappetta C, Bertoccini L, Ceccarelli V, Capoccia D, Gaggini M, Di Cristofano C, Della Rocca C, Silecchia G, Leonetti F, Lenzi A, Gastaldelli A, Cavallo MG (2020) Relationship between hepatic and systemic angiopoietin-like 3, hepatic vitamin D receptor expression and NAFLD in obesity. Liver Int 40:2139–2147. https://doi.org/10.1111/liv.14554

    Article  CAS  PubMed  Google Scholar 

  4. Cimini FA, Barchetta I, Carotti S, Bertoccini L, Baroni MG, Vespasiani-Gentilucci U, Cavallo MG, Morini S (2017) Relationship between adipose tissue dysfunction, vitamin D deficiency and the pathogenesis of non-alcoholic fatty liver disease. World J Gastroenterol 23:3407–3417. https://doi.org/10.3748/wjg.v23.i19.3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Borges-Canha M, Neves JS, Mendonca F, Silva MM, Costa C, Cabral PM, Guerreiro V, Lourenco R, Meira P, Salazar D, Ferreira MJ, Pedro J, Leite AR, Von-Hafe M, Vale C, Viana S, Sande A, Belo S, Lau E et al (2021) The impact of vitamin d in non-alcoholic fatty liver disease: a cross-sectional study in patients with morbid obesity. Diabetes Metab Syndr Obes 14:487–495. https://doi.org/10.2147/DMSO.S286334

    Article  PubMed  PubMed Central  Google Scholar 

  6. Heo NJ, Park HE, Yoon JW, Kwak MS, Yang JI, Chung SJ, Yim JY, Chung GE (2021) The association between vitamin D and nonalcoholic fatty liver disease assessed by controlled attenuation parameter. J Clin Med 10. https://doi.org/10.3390/jcm10122611

  7. Voigt RM, Forsyth CB, Green SJ, Engen PA, Keshavarzian A (2016) Chapter nine - circadian rhythm and the gut microbiome. In: Cryan JF, Clarke G (eds) International Review of Neurobiology. Academic Press, pp 193–205

    Google Scholar 

  8. Cox KH, Takahashi JS (2019) Circadian clock genes and the transcriptional architecture of the clock mechanism. J molecular endocrinol 63:R93–R102. https://doi.org/10.1530/JME-19-0153

    Article  CAS  Google Scholar 

  9. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328. https://doi.org/10.1016/j.cell.2008.06.050

    Article  CAS  PubMed  Google Scholar 

  10. Noh SG, Jung HJ, Kim S, Arulkumar R, Kim DH, Park D, Chung HY (2022) Regulation of circadian genes Nr1d1 and Nr1d2 in sex-different manners during liver aging. Int J Mol Sci 23. https://doi.org/10.3390/ijms231710032

  11. Reinke H, Asher G (2016) Circadian clock control of liver metabolic functions. Gastroenterol 150:574–580. https://doi.org/10.1053/j.gastro.2015.11.043

    Article  Google Scholar 

  12. Grosbellet E, Zahn S, Arrive M, Dumont S, Gourmelen S, Pevet P, Challet E, Criscuolo F (2015) Circadian desynchronization triggers premature cellular aging in a diurnal rodent. FASEB J 29:4794–4803. https://doi.org/10.1096/fj.14-266817

    Article  CAS  PubMed  Google Scholar 

  13. Solt LA, Wang Y, Banerjee S, Hughes T, Kojetin DJ, Lundasen T, Shin Y, Liu J, Cameron MD, Noel R, Yoo SH, Takahashi JS, Butler AA, Kamenecka TM, Burris TP (2012) Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 485:62–68. https://doi.org/10.1038/nature11030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mlcek J, Jurikova T, Skrovankova S, Sochor J (2016) Quercetin and its anti-allergic immune response. Molecules (Basel Switzerland) 21:623. https://doi.org/10.3390/molecules21050623

    Article  CAS  PubMed  Google Scholar 

  15. Michala AS, Pritsa A (2022) Quercetin: a molecule of great biochemical and clinical value and its beneficial effect on diabetes and cancer. Diseases 10. https://doi.org/10.3390/diseases10030037

  16. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y (2016) Quercetin, inflammation and immunity. Nutrients

  17. Lee K-Y, Choi H-S, Choi H-S, Chung KY, Lee B-J, Maeng H-J, Seo M-D (2016) Quercetin directly interacts with vitamin D receptor (VDR): structural implication of VDR activation by quercetin. Biomol Ther (Seoul)

  18. Kanhere M, Chassaing B, Gewirtz AT, Tangpricha V (2018) Role of vitamin D on gut microbiota in cystic fibrosis. J Steroid Biochem Mol Biol

  19. Porras D, Nistal E, Martínez-Flórez S, Pisonero-Vaquero S, Olcoz JL, Jover R, González-Gallego J, García-Mediavilla MV, Sánchez-Campos S (2017) Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med

  20. Lv M, Yang S, Cai L, Qin L-Q, Li B-Y, Wan Z (2018) Effects of quercetin intervention on cognition function in APP/PS1 mice was affected by vitamin D status. Mol Nutr Food Res

  21. Shiue I (2013) Low vitamin D levels in adults with longer time to fall asleep: US NHANES, 2005-2006. Int J Cardiol 168:5074–5075. https://doi.org/10.1016/j.ijcard.2013.07.195

    Article  PubMed  Google Scholar 

  22. Subramanian P, Kaliyamoorthy K, Jayapalan JJ, Abdul-Rahman PS, Haji Hashim O (2017) Influence of quercetin in the temporal regulation of redox homeostasis in Drosophila melanogaster. J Insect Sci 17. https://doi.org/10.1093/jisesa/iex040

  23. Okada Y, Okada M (2020) Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. Mol Biol Rep 47:1021–1032. https://doi.org/10.1007/s11033-019-05194-8

    Article  CAS  PubMed  Google Scholar 

  24. Sadria M, Layton AT (2021) Aging affects circadian clock and metabolism and modulates timing of medication. iScience 24:102245. https://doi.org/10.1016/j.isci.2021.102245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang S, Zhou H, Wang G, Zhong XH, Shen QL, Zhang XJ, Li RY, Chen LH, Zhang YH, Wan Z (2020) Quercetin is protective against short-term dietary advanced glycation end products intake induced cognitive dysfunction in aged ICR mice. J Food Biochem 44:e13164. https://doi.org/10.1111/jfbc.13164

    Article  PubMed  Google Scholar 

  26. Yang S, Wang G, Ma ZF, Qin LQ, Zhai YJ, Yu ZL, Xue M, Zhang YH, Wan Z (2020) Dietary advanced glycation end products-induced cognitive impairment in aged ICR mice: protective role of quercetin. Mol Nutr Food Res 64:e1901019. https://doi.org/10.1002/mnfr.201901019

    Article  CAS  PubMed  Google Scholar 

  27. Akyel YK, Ozturk Civelek D, Ozturk Seyhan N, Gul S, Gazioglu I, Pala Kara Z, Levi F, Kavakli IH, Okyar A (2023) Diurnal changes in capecitabine clock-controlled metabolism enzymes are responsible for its pharmacokinetics in male mice. J Biol Rhythms 38:171–184. https://doi.org/10.1177/07487304221148779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez RM, Cortes-Espinar AJ, Soliz-Rueda JR, Feillet-Coudray C, Casas F, Colom-Pellicer M, Aragones G, Avila-Roman J, Muguerza B, Mulero M, Salvado MJ (2022) Time-of-day circadian modulation of grape-seed procyanidin extract (GSPE) in hepatic mitochondrial dynamics in cafeteria-diet-induced obese rats. Nutrients 14. https://doi.org/10.3390/nu14040774

  29. Hossein-nezhad A, Holick MF (2012) Optimize dietary intake of vitamin D: an epigenetic perspective. Curr Opin Clin Nutr Metab Care 15:567–579. https://doi.org/10.1097/MCO.0b013e3283594978

    Article  CAS  PubMed  Google Scholar 

  30. Burnett CML, Grobe JL (2013) Direct calorimetry identifies deficiencies in respirometry for the determination of resting metabolic rate in C57Bl/6 and FVB mice. American journal of physiology. Endocrinol metab 305:E916–E924. https://doi.org/10.1152/ajpendo.00387.2013

    Article  CAS  Google Scholar 

  31. Godala M, Sewerynek E, Maslach D, Krzyzak M, Gaszynska E (2022) Resting metabolic rate in women with endocrine and osteoporotic disorders in relation to nutritional status, diet and 25(OH)D concentration. Int J Environ Res Public Health 19. https://doi.org/10.3390/ijerph19053118

  32. Nikooyeh B, Shariatzadeh N, Rismanchi M, Hollis BW, Neyestani TR (2021) Daily intake of yogurt drink fortified either with vitamin D alone or in combination with added calcium causes a thyroid-independent increase of resting metabolic rate in adults with type 2 diabetes: a randomized, double-blind, clinical trial. Appl Physiol Nutr Metab 46:1363–1369. https://doi.org/10.1139/apnm-2021-0248

    Article  CAS  PubMed  Google Scholar 

  33. Mu Y, Cheng D, Yin TL, Yang J (2021) Vitamin D and polycystic ovary syndrome: a narrative review. Reprod Sci 28:2110–2117. https://doi.org/10.1007/s43032-020-00369-2

    Article  PubMed  Google Scholar 

  34. Saleem N, Rizvi NB, Elahi S (2021) Prevalence of vitamin D deficiency and its association with insulin resistance in obese women with normal fasting glucose. BioMed res int 2021:2259711–2259711. https://doi.org/10.1155/2021/2259711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Spoto B, Pisano A, Zoccali C (2016) Insulin resistance in chronic kidney disease: a systematic review. Am J Physiol-Renal Physiol 311:F1087–F1108. https://doi.org/10.1152/ajprenal.00340.2016

    Article  CAS  PubMed  Google Scholar 

  36. Akhtar A, Sah SP (2020) Insulin signaling pathway and related molecules: role in neurodegeneration and Alzheimer’s disease. Neurochem Int 135:104707. https://doi.org/10.1016/j.neuint.2020.104707

    Article  CAS  PubMed  Google Scholar 

  37. Jarrett RJ, Keen H (1969) Diurnal variation of oral glucose tolerance: a possible pointer to the evolution of diabetes mellitus. Br Med J 2:341–344. https://doi.org/10.1136/bmj.2.5653.341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He B, Nohara K, Park N, Park YS, Guillory B, Zhao Z, Garcia JM, Koike N, Lee CC, Takahashi JS, Yoo SH, Chen Z (2016) The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab 23:610–621. https://doi.org/10.1016/j.cmet.2016.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW (2009) Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring) 17:2100–2102. https://doi.org/10.1038/oby.2009.264

    Article  PubMed  Google Scholar 

  40. Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106:4453–4458. https://doi.org/10.1073/pnas.0808180106

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stenvers DJ, Scheer F, Schrauwen P, la Fleur SE, Kalsbeek A (2019) Circadian clocks and insulin resistance. Nat Rev Endocrinol 15:75–89. https://doi.org/10.1038/s41574-018-0122-1

    Article  CAS  PubMed  Google Scholar 

  42. Romano F, Muscogiuri G, Di Benedetto E, Zhukouskaya VV, Barrea L, Savastano S, Colao A, Di Somma C (2020) Vitamin D and sleep regulation: is there a role for vitamin D? Curr Pharm Des

  43. Zou R, Wang S, Cai H, Li F, Lin P, Wang Y, Wang C (2021) Vitamin D deficiency in children with vasovagal syncope is associated with impaired circadian rhythm of blood pressure. Front neurosci 15:712462–712462. https://doi.org/10.3389/fnins.2021.712462

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell 165:535–550. https://doi.org/10.1016/j.cell.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  45. Xu T, Lu B (2019) The effects of phytochemicals on circadian rhythm and related diseases. Crit Rev Food Sci Nutr 59:882–892. https://doi.org/10.1080/10408398.2018.1493678

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant NOs. 81872609 and 82073535), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the University Science Research Project of Jiangsu Province (21KJB310021).

Author information

Authors and Affiliations

Authors

Contributions

Rui Li: methodology, investigation, data curation, formal analysis, and writing—original draft. Guiping Wang: methodology, investigation, data curation, formal analysis, and writing—review and editing. Ruitong Liu: investigation, data curation, and formal analysis. Lan Luo: data curation and writing—review and editing. Ying Zhang: investigation and writing—review and editing. Zhongxiao Wan: conceptualization, methodology, funding acquisition, project administration, and writing—review and editing.

Corresponding author

Correspondence to Zhongxiao Wan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The whole procedure abided by the Guidelines in the Care and Use of Animals and was approved by the Animal Studies Committee of Soochow University (approval no. SUDA20211206A02).

Data availability

The authors declare that all data were generated in-house and that no paper mill was used.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

1. Vitamin D-deficient diet mice had elevated fasting insulin and HOMA-IR at ZT13.

2. Vitamin D-deficient diet mice had disordered hepatic circadian rhythm.

3. Quercetin improved disordered hepatic circadian rhythm post vitamin D-deficient diet.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Wang, G., Liu, R. et al. Quercetin improved hepatic circadian rhythm dysfunction in middle-aged mice fed with vitamin D-deficient diet. J Physiol Biochem 80, 137–147 (2024). https://doi.org/10.1007/s13105-023-00990-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-023-00990-0

Keywords

Navigation