Skip to main content
Log in

Potential role of Akt in the regulation of fibroblast growth factor 21 by berberine

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Fibroblast growth factor 21 (FGF21) is expressed in several organs, including the liver, adipose tissue, and cardiovascular system, and plays an important role in cross-talk with other organs by binding to specific FGF receptors and their co-receptors. FGF21 represents a potential target for the treatment of obesity, type 2 diabetes mellitus, and non-alcoholic steatohepatitis (NASH). The production of FGF21 in skeletal muscle was recently suggested to be beneficial for metabolic health through its autocrine and paracrine effects. However, the regulatory mechanisms of FGF21 in skeletal muscle remain unclear. In the present study, we showed that berberine regulated FGF21 production in C2C12 myotubes in a dose-dependent manner. We also examined the effects of A-674563, a selective Akt1 inhibitor, on the berberine-mediated regulation of FGF21 expression in C2C12 myotubes. Berberine significantly increased the secretion of FGF21 in C2C12 myotubes, while A-674563 attenuated this effect. Moreover, a pre-treatment with A-674563 effectively suppressed berberine-induced increases in Bmal1 expression in C2C12 myotubes, indicating that the up-regulation of Bmal1 after the berberine treatment was dependent on Akt1. Additionally, berberine-induced increases in FGF21 secretion were significantly attenuated in C2C12 cells transfected with Bmal1 siRNA, indicating the contribution of the core clock transcription factor BMAL1 to Akt-regulated FGF21 in response to berberine. Collectively, these results indicate that berberine regulates the expression of FGF21 through the Akt1 pathway in C2C12 myotubes. Moreover, the core clock gene Bmal1 may participate in the control of the myokine FGF21.

Graphical abstract

Berberine stimulated Akt1-dependent FGF21 expression in C2C12 myotubes. The up-regulation of FGF21 through the modulation of PI3K/AKT1/BMAL1 in response to berberine may be involved in the regulation of cellular function (such as Glut1 expression) by acting in an autocrine and/or paracrine manner in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BMAL1:

Brain and muscle Arnt-like protein-1

FGF21:

Fibroblast growth factor 21

NASH:

Non-alcoholic steatohepatitis

ROR:

Retinoic acid receptor-related orphan receptor

References

  1. Tezze C, Romanello V, Sandri M (2019) FGF21 as modulator of metabolism in health and disease. Front Physiol 10:419. https://doi.org/10.3389/fphys.2019.00419

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lewis JE, Ebling FJP, Samms RJ, Tsintzas K (2019) Going back to the biology of FGF21: new insights. Trends Endocrinol Metab 30:491–504. https://doi.org/10.1016/j.tem.2019.05.007

    Article  PubMed  CAS  Google Scholar 

  3. Staiger H, Keuper M, Berti L, Hrabe de Angelis M, Haring HU (2017) Fibroblast growth factor 21-metabolic role in mice and men. Endocr Rev 38:468–488. https://doi.org/10.1210/er.2017-00016

    Article  PubMed  Google Scholar 

  4. Kaur N, Gare SR, Shen J, Raja R, Fonseka O, Liu W (2022) Multi-organ FGF21-FGFR1 signaling in metabolic health and disease. Front Cardiovasc Med 9:962561. https://doi.org/10.3389/fcvm.2022.962561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nishimura T, Nakatake Y, Konishi M, Itoh N (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 1492:203–206. https://doi.org/10.1016/S0167-4781(00)00067-1

    Article  PubMed  CAS  Google Scholar 

  6. Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5(6):426–437. https://doi.org/10.1016/j.cmet.2007.05.002

    Article  PubMed  CAS  Google Scholar 

  7. Liu C, Schönke M, Spoorenberg B, Lambooij JM, van der Zande HJP, Zhou E, Tushuizen ME, Andreasson AC, Park A, Oldham S, Uhrbom M, Ahlstedt I, Ikeda Y, Wallenius K, Peng XR, Guigas B, Boon MR, Wang Y, Rensen PCN (2023) FGF21 protects against hepatic lipotoxicity and macrophage activation to attenuate fibrogenesis in nonalcoholic steatohepatitis. Elife 12:e83075. https://doi.org/10.7554/eLife.83075

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gimeno RE, Moller DE (2014) FGF21-based pharmacotherapy–potential utility for metabolic disorders. Trends Endocrinol Metab 25(6):303–311. https://doi.org/10.1016/j.tem.2014.03.001

    Article  PubMed  CAS  Google Scholar 

  9. Dostálová I, Haluzíková D, Haluzík M (2009) Fibroblast growth factor 21: a novel metabolic regulator with potential therapeutic properties in obesity/type 2 diabetes mellitus. Physiol Res 58(1):1–7. https://doi.org/10.33549/physiolres.931610

    Article  PubMed  Google Scholar 

  10. Tillman EJ, Rolph T (2020) FGF21: an emerging therapeutic target for non-alcoholic steatohepatitis and related metabolic diseases. Front Endocrinol (Lausanne) 11:601290. https://doi.org/10.3389/fendo.2020.601290

    Article  PubMed  Google Scholar 

  11. Chen Z, Yang L, Liu Y, Huang P, Song H, Zheng P (2022) The potential function and clinical application of FGF21 in metabolic diseases. Front Pharmacol 13:1089214. https://doi.org/10.3389/fphar.2022.1089214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–6027. https://doi.org/10.1210/en.2008-0816

    Article  PubMed  CAS  Google Scholar 

  13. Foltz IN, Hu S, King C, Wu X, Yang C, Wang W, Weiszmann J, Stevens J, Chen JS, Nuanmanee N, Gupte J, Komorowski R, Sekirov L, Hager T, Arora T, Ge H, Baribault H, Wang F, Sheng J, Karow M, Wang M, Luo Y, McKeehan W, Wang Z, Véniant MM, Li Y (2012) Treating diabetes and obesity with an FGF21-mimetic antibody activating the betaKlotho/FGFR1c receptor complex. Sci Transl Med 4(162):162ra153. https://doi.org/10.1126/scitranslmed.3004690

    Article  PubMed  CAS  Google Scholar 

  14. Huang J, Ishino T, Chen G, Rolzin P, Osothprarop TF, Retting K, Li L, Jin P, Matin MJ, Huyghe B, Talukdar S, Bradshaw CW, Palanki M, Violand BN, Woodnutt G, Lappe RW, Ogilvie K, Levin N (2013) Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody. J Pharmacol Exp Ther 346(2):270–280. https://doi.org/10.1124/jpet.113.204420

    Article  PubMed  CAS  Google Scholar 

  15. Kharitonenkov A, Beals JM, Micanovic R, Strifler BA, Rathnachalam R, Wroblewski VJ, Li S, Koester A, Ford AM, Coskun T, Dunbar JD, Cheng CC, Frye CC, Bumol TF, Moller DE (2013) Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS ONE 8(3):e58575. https://doi.org/10.1371/journal.pone.0058575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, Chen JL, Jung DY, Zhang Z, Ko HJ, Kim JK, Véniant MM (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58(1):250–259. https://doi.org/10.2337/db08-0392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Weng Y, Chabot JR, Bernardo B, Yan Q, Zhu Y, Brenner MB, Vage C, Logan A, Calle R, Talukdar S (2015) Pharmacokinetics (PK), pharmacodynamics (PD) and integrated PK/PD modeling of a novel long acting FGF21 clinical candidate PF-05231023 in diet-induced obese and leptin-deficient obese mice. PLoS ONE 10(3):e0119104. https://doi.org/10.1371/journal.pone.0119104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Nielsen MH, Gillum MP, Vrang N, Jelsing J, Hansen HH, Feigh M, Oró D (2023) Hepatoprotective effects of the long-acting fibroblast growth factor 21 analog PF-05231023 in the GAN diet-induced obese and biopsy-confirmed mouse model of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 324(5):G378–G388. https://doi.org/10.1152/ajpgi.00157.2022

    Article  PubMed  CAS  Google Scholar 

  19. Tyynismaa H, Carroll CJ, Raimundo N, Ahola-Erkkilä S, Wenz T, Ruhanen H, Guse K, Hemminki A, Peltola-Mjøsund KE, Tulkki V, Oresic M, Moraes CT, Pietiläinen K, Hovatta I, Suomalainen A (2010) Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet 19(20):3948–3958. https://doi.org/10.1093/hmg/ddq310

    Article  PubMed  CAS  Google Scholar 

  20. Vandanmagsar B, Warfel JD, Wicks SE, Ghosh S, Salbaum JM, Burk D, Dubuisson OS, Mendoza TM, Zhang J, Noland RC, Mynatt RL (2016) Impaired mitochondrial fat oxidation induces FGF21 in muscle. Cell Rep 15(8):1686–1699. https://doi.org/10.1016/j.celrep.2016.04.057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rosales-Soto G, Diaz-Vegas A, Casas M, Contreras-Ferrat A, Jaimovich E (2020) Fibroblast growth factor-21 potentiates glucose transport in skeletal muscle fibers. J Mol Endocrinol 65(3):85–95. https://doi.org/10.1530/JME-19-0210

    Article  CAS  Google Scholar 

  22. Keipert S, Ost M, Johann K, Imber F, Jastroch M, van Schothorst EM, Keijer J, Klaus S (2014) Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. Am J Physiol Endocrinol Metab 306(5):E469–E482. https://doi.org/10.1152/ajpendo.00330.2013

    Article  PubMed  CAS  Google Scholar 

  23. Fisher FM, Maratos-Flier E (2016) Understanding the physiology of FGF21. Annu Rev Physiol 78:223–241. https://doi.org/10.1146/annurev-physiol-021115-105339

    Article  PubMed  CAS  Google Scholar 

  24. Ribas F, Villarroya J, Hondares E, Giralt M, Villarroya F (2014) FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signalling. Biochem J 463(2):191–199. https://doi.org/10.1042/BJ20140403

    Article  PubMed  CAS  Google Scholar 

  25. Hojman P, Pedersen M, Nielsen AR, Krogh-Madsen R, Yfanti C, Akerstrom T, Nielsen S, Pedersen BK (2009) Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes 58(12):2797–2801. https://doi.org/10.2337/db09-0713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Domouzoglou EM, Vlahos AP, Cholevas VK, Papafaklis MI, Chaliasos N, Siomou E, Michalis LK, Tsatsoulis A, Naka KK (2021) Association of fibroblast growth factor 21 with metabolic syndrome and endothelial function in children: a prospective cross-sectional study on novel biomarkers. Ann Pediatr Endocrinol Metab 26(4):242–251. https://doi.org/10.6065/apem.2040258.129

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li Y, Li S, Qiu Y, Zhou M, Chen M, Hu Y, Hong S, Jiang L, Guo Y (2022) Circulating FGF21 and GDF15 as biomarkers for screening, diagnosis, and severity assessment of primary mitochondrial disorders in children. Front Pediatr 10:851534. https://doi.org/10.3389/fped.2022.851534

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tanajak P, Pongkan W, Chattipakorn SC, Chattipakorn N (2018) Increased plasma FGF21 level as an early biomarker for insulin resistance and metabolic disturbance in obese insulin-resistant rats. Diabetes Vasc Dis Res 15:263–269. https://doi.org/10.1177/1479164118757152

    Article  CAS  Google Scholar 

  29. Owen BM, Mangelsdorf DJ, Kliewer SA (2015) Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab 26(1):22–29. https://doi.org/10.1016/j.tem.2014.10.002

    Article  PubMed  CAS  Google Scholar 

  30. Geng L, Lam KSL, Xu A (2020) The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol 16:654–667. https://doi.org/10.1038/s41574-020-0386-0

    Article  PubMed  CAS  Google Scholar 

  31. Jung YE, Lee KW, Cho JH, Bae DW, Jeong BG, Jung YJ, Park SB, An YJ, Kim K, Lee GS, Kang LW, Moon JH, Lee JH, Kim EK, Yim HS, Cha SS (2023) Heating-mediated purification of active FGF21 and structure-based design of its variant with enhanced potency. Sci Rep 13(1):1005. https://doi.org/10.1038/s41598-023-27717-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hirai T, Nomura K, Ikai R, Nakashima KI, Inoue M (2019) Baicalein stimulates fibroblast growth factor 21 expression by up-regulating retinoic acid receptor-related orphan receptor α in C2C12 myotubes. Biomed Pharmacother 109:503–510. https://doi.org/10.1016/j.biopha.2018.10.154

    Article  PubMed  CAS  Google Scholar 

  33. Kiyama G, Nakashima KI, Shimada K, Murono N, Kakihana W, Imai H, Inoue M, Hirai T (2021) Transmembrane G protein-coupled receptor 5 signaling stimulates fibroblast growth factor 21 expression concomitant with up-regulation of the transcription factor nuclear receptor Nr4a1. Biomed Pharmacother 142:112078. https://doi.org/10.1016/j.biopha.2021.112078

    Article  PubMed  CAS  Google Scholar 

  34. Yokoi H, Mizukami H, Nagatsu A, Tanabe H, Inoue M (2010) Hydroxy monounsaturated fatty acids as agonists for peroxisome proliferator-activated receptors. Biol Pharm Bull 33(5):854–861. https://doi.org/10.1248/bpb.33.854

    Article  PubMed  CAS  Google Scholar 

  35. Tanaka K, Hirai T, Ishibashi Y, Izumo N, Togari A (2015) Modulation of osteoblast differentiation and bone mass by 5-HT2A receptor signaling in mice. Eur J Pharmacol 762:150–157. https://doi.org/10.1016/j.ejphar.2015.05.048

    Article  PubMed  CAS  Google Scholar 

  36. Hirai T, Taniura H, Goto Y, Tamaki K, Oikawa H, Kambe Y, Ogura M, Ohno Y, Takarada T, Yoneda Y (2005) Counteraction by repetitive daily exposure to static magnetism against sustained blockade of N-methyl-D-aspartate receptor channels in cultured rat hippocampal neurons. J Neurosci Res 80(4):491–500. https://doi.org/10.1002/jnr.20497

    Article  PubMed  CAS  Google Scholar 

  37. Hirai T, Mitani Y, Kurumisawa K, Nomura K, Wang W, Nakashima KI, Inoue M (2019) Berberine stimulates fibroblast growth factor 21 by modulating the molecular clock component brain and muscle Arnt-like 1 in brown adipose tissue. Biochem Pharmacol 164:165–176. https://doi.org/10.1016/j.bcp.2019.04.017

    Article  PubMed  CAS  Google Scholar 

  38. Izumiya Y, Bina HA, Ouchi N, Akasaki Y, Kharitonenkov A, Walsh K (2008) FGF21 is an Akt-regulated myokine. FEBS Lett 582(27):3805–3810. https://doi.org/10.1016/j.febslet.2008.10.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wang Y, Solt LA, Burris TP (2010) Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha. J Biol Chem 285(21):15668–15673. https://doi.org/10.1074/jbc.M110.102160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37(2):187–192. https://doi.org/10.1038/ng1504

    Article  PubMed  CAS  Google Scholar 

  41. Javadi B, Sahebkar A (2017) Natural products with anti-inflammatory and immunomodulatory activities against autoimmune myocarditis. Pharmacol Res 124:34–42. https://doi.org/10.1016/j.phrs.2017.07.022

    Article  PubMed  CAS  Google Scholar 

  42. Habtemariam S (2016) Berberine and inflammatory bowel disease: a concise review. Pharmacol Res 113(Pt A):592–599. https://doi.org/10.1016/j.phrs.2016.09.041

    Article  PubMed  CAS  Google Scholar 

  43. Zhang H, Zhao C, Cao G, Guo L, Zhang S, Liang Y, Qin C, Su P, Li H, Zhang W (2017) Berberine modulates amyloid-β peptide generation by activating AMP-activated protein kinase. Neuropharmacology 125:408–417. https://doi.org/10.1016/j.neuropharm.2017.08.013

    Article  PubMed  CAS  Google Scholar 

  44. Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, Hu LH, Li J, Ye JM (2008) Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 57(5):1414–1418. https://doi.org/10.2337/db07-1552

    Article  PubMed  CAS  Google Scholar 

  45. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT, Hohnen-Behrens C, Gosby A, Kraegen EW, James DE, Kim JB (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55(8):2256–2264. https://doi.org/10.2337/db06-0006,2256-2264

    Article  PubMed  CAS  Google Scholar 

  46. Kim WS, Lee YS, Cha SH, Jeong HW, Choe SS, Lee MR, Oh GT, Park HS, Lee KU, Lane MD, Kim JB (2009) Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity. Am J Physiol Endocrinol Metab 296(4):E812–E819. https://doi.org/10.1152/ajpendo.90710.2008

    Article  PubMed  CAS  Google Scholar 

  47. Sun Y, Xia M, Yan H, Han Y, Zhang F, Hu Z, Cui A, Ma F, Liu Z, Gong Q, Chen X, Gao J, Bian H, Tan Y, Li Y, Gao X (2018) Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21. Br J Pharmacol 175(2):374–387. https://doi.org/10.1111/bph.14079

    Article  PubMed  CAS  Google Scholar 

  48. Chatterjee S, Nam D, Guo B, Kim JM, Winnier GE, Lee J, Berdeaux R, Yechoor VK, Ma K (2013) Brain and muscle Arnt-like 1 is a key regulator of myogenesis. J Cell Sci 126(Pt 10):2213–2224. https://doi.org/10.1242/jcs.120519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Andrews JL, Zhang X, McCarthy JJ, McDearmon EL, Hornberger TA, Russell B, Campbell KS, Arbogast S, Reid MB, Walker JR, Hogenesch JB, Takahashi JS, Esser KA (2010) CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci USA 107(44):19090–19095. https://doi.org/10.1073/pnas.1014523107

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang X, Patel SP, McCarthy JJ, Rabchevsky AG, Goldhamer DJ, Esser KA (2012) A non-canonical E-box within the MyoD core enhancer is necessary for circadian expression in skeletal muscle. Nucleic Acids Res 40(8):3419–3430. https://doi.org/10.1093/nar/gkr1297

    Article  PubMed  CAS  Google Scholar 

  51. Liu X, Wang Y, Hou L, Xiong Y, Zhao S (2017) Fibroblast growth factor 21 (FGF21) promotes formation of aerobic myofibers via the FGF21-SIRT1-AMPK-PGC1α pathway. J Cell Physiol 232(7):1893–1906. https://doi.org/10.1002/jcp.25735

    Article  PubMed  CAS  Google Scholar 

  52. Mashili FL, Austin RL, Deshmukh AS, Fritz T, Caidahl K, Bergdahl K, Zierath JR, Chibalin AV, Moller DE, Kharitonenkov A, Krook A (2011) Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev 27:286–297. https://doi.org/10.1002/dmrr.1177

    Article  PubMed  CAS  Google Scholar 

  53. Guridi M, Tintignac LA, Lin S, Kupr B, Castets P, Ruegg MA (2015) Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21. Sci Signal 8(402):ra113. https://doi.org/10.1126/scisignal.aab3715

    Article  PubMed  CAS  Google Scholar 

  54. Arias-Calderón M, Casas M, Balanta-Melo J, Morales-Jiménez C, Hernández N, Llanos P, Jaimovich E, Buvinic S (2023) Fibroblast growth factor 21 is expressed and secreted from skeletal muscle following electrical stimulation via extracellular ATP activation of the PI3K/Akt/mTOR signaling pathway. Front Endocrinol (Lausanne) 14:1059020. https://doi.org/10.3389/fendo.2023.1059020

    Article  PubMed  Google Scholar 

  55. Schaap FG, Kremer AE, Lamers WH, Jansen PL, Gaemers IC (2013) Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie 95(4):692–699. https://doi.org/10.1016/j.biochi.2012.10.019

    Article  PubMed  CAS  Google Scholar 

  56. Morishita Y, Miura D, Kida S (2016) PI3K regulates BMAL1/CLOCK-mediated circadian transcription from the Dbp promoter. Biosci Biotechnol Biochem 80(6):1131–1140. https://doi.org/10.1080/09168451.2015.1136885

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

The present study was supported by JSPS KAKENHI Grant Number JP19K07154.

Author information

Authors and Affiliations

Authors

Contributions

TH and MI conceived and designed the study; TH, WW, and NM and acquired and analyzed the data, performed statistical analyses; KI and MI taught and advised the experiments to WW and NM; TH wrote the draft article; WW, NM, KI and MI edited the manuscript; all authors had access to the study data and reviewed and approved the final manuscript.

Corresponding author

Correspondence to Takao Hirai.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 110 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirai, T., Wang, W., Murono, N. et al. Potential role of Akt in the regulation of fibroblast growth factor 21 by berberine. J Nat Med 78, 169–179 (2024). https://doi.org/10.1007/s11418-023-01755-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01755-1

Keywords

Navigation