Skip to main content
Log in

Intelligent Robust Control of Autonomous Robot: Quantum Self-Organization of Imperfect Knowledge Bases—Experiment

  • ARTIFICIAL INTELLIGENCE
  • Published:
Journal of Computer and Systems Sciences International Aims and scope

Abstract

The article discusses the information technology of a robust intelligent control system design based on quantum fuzzy inference. The application of the developed design methodology is based on the quantum self-organization of fuzzy controller’s imperfect knowledge bases and leads to an increase in the robustness of intelligent control systems in unpredicted situations. The results of mathematical modeling and physical experiment are compared using the example of an autonomous robot in the form of a “cart – pole” system. Experimental confirmation of the synergetic effect existence in the robust self-organized fuzzy controller formation from a finite number of non-robust fuzzy controllers in on-line has been demonstrated. The resulting effect is based on the existence of hidden quantum information extracted from the classical states of the controller’s time-varying gain coefficients processes schedule. The derived law of quantum information thermodynamics establishes the possibility to forming a thermodynamic control force due to the extracted amount of hidden quantum information and performing additional useful work, that guarantees the achievement of the control goal based on increasing the robustness of a self-organized quantum controller. At the same time, the amount of useful work performed by the control object (at the macro level) exceeds the amount of work spent (at the micro level) by a quantum self-organized controller to extract the quantum information hidden in the responses of imperfect knowledge bases without violating the second thermodynamics information law for open quantum systems with information exchange of entangled super correlated states. A concrete example of an autonomous robot is given, demonstrating the existence of a quantum self-organization synergetic effect to imperfect knowledge bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.

Similar content being viewed by others

REFERENCES

  1. S. V. Ulyanov, “System for intelligent control based on soft computing,” US patent No. 6,415,272B1, 2003.

  2. S. V. Ulyanov, “Soft computing optimizer of intelligent control system structures,” US Patent No. 7,219,087B2, 2007.

  3. S. V. Ulyanov, “System and method for control using quantum soft computing,” US Patent No. 6,578,018B1, 2003.

  4. S. V. Ulyanov, “Self-organizing quantum robust control methods and systems for situations with uncertainty and risk,” US Patent No. 8788450B2, 2014.

  5. A. G. Reshetnikov, S. V. Ulyanov, P. V. Zrelov, and D. P. Zrelova, “Quantum computational toolkit of quantum self-organized intelligent control system simulator: Quantum deep learning on quantum-inspired neural network and quantum genetic algorithms,” in Intelligent Cognitive Robotics (Kurs, Moscow, 2023), Vol. 3 [in Russian].

    Google Scholar 

  6. S. V. Ulyanov, L. V. Litvintseva, and T. Hagiwara, “Design of self-organized intelligent control system based on quantum fuzzy inference: Intelligent system of systems engineering approach,” in Proc. IEEE Int. Conf. on Systems, Man and Cybernetics (SMC'2005) (Hawaii, 2005), Vol. 4, pp. 3835–3840.

  7. L. V. Litvintseva, I. S. Ulyanov, S. V. Ulyanov, and S. S. Ulyanov, “Quantum fuzzy inference for knowledge base design in robust intelligent controllers,” J. Comput. Syst. Sci. Int. 46 (6), 908–961 (2007).

    Article  Google Scholar 

  8. L. V. Litvintseva and S. V. Ulyanov, “Intelligent control system. I. Quantum computing and self-organization algorithm,” J. Comput. Syst. Sci. Int. 48 (6), 946–984 (2009).

    Article  Google Scholar 

  9. S. V. Ulyanov, “Quantum self-organization of imperfect knowledge bases: Quantum intelligent force control and information-thermodynamic law of extracted informed useful work,” in Intelligent Cognitive Robotics (Kurs, Moscow, 2023), Vol. 2.

    Google Scholar 

  10. A. V. Butenko, P. V. Zrelov, V. V. Koren’kov, S. A. Kostromin, D. N. Nikiforov, A. G. Reshetnikov, S. V. Semashko, G. V. Trubnikov, and S. V. Ul’yanov, “Intelligent system for remote control of pressure and flow of liquid nitrogen in a cryogenic system of superconducting magnets: Software and hardware platform,” Pis’ma Fiz. Elem. Chastits At. Yadra 20 (2), 183–189 (2023).

    Google Scholar 

  11. V. V. Korenkov, A. G. Reshetnikov, S. V. Ulyanov, P. V. Zrelov, and D. P. Zrelova, “Self-organized intelligent quantum controller: quantum deep learning and quantum genetic algorithm: QSCOptKBTM toolkit,” in Proc. 6th Int. Workshop on Deep Learning in Computational Physics (DLCP2022) (Dubna, 2022).

  12. S. V. Ul’yanov and G. P. Reshetnikov, Intelligent Computing Technologies: Soft and Fractional Computing in Intelligent Control: A Study Guide (OIYaI, Dubna, 2013) [in Russian].

  13. S. V. Ul’yanov, A. G. Reshetnikov, and G. P. Reshetnikov, Intelligent Computing Technologies: Quantum Computing and Programming in Self-Organizing Intelligent Control Systems (OIYaI, Dubna, 2015) [in Russian].

  14. S. V. Ulyanov, A. G. Reshetnikov, and D. P. Zrelova, “Industrial robotic intelligent robust control system: Applying quantum soft computing technologies and quantum software engineering in unpredicted control situations,” Program. Prod. Sist. 36 (1), 197–206 (2023). https://doi.org/10.15827/0236-235X.141.197-206

    Article  Google Scholar 

  15. L. V. Litvintseva, S. G. Karatkevich, and S. V. Ulyanov, “Intelligent control system. II. Design of self-organized robust knowledge bases in contingency control situations,” J. Comput. Syst. Sci. Int. 50 (2), 250–292 (2011).

    Article  Google Scholar 

  16. S. V. Ulyanov, V. S. Ulyanov, and A. G. Reshetnikov, “Physical rigidity and mathematical correctness of the intelligent robot model: Adequacy to a physical object and accuracy of equations of motion of dynamic systems: Method of deep machine learning based on Lagrangian neural networks,” Sist. Anal. Nauke Obraz., No. 1, 1–41 (2021). http://sanse.ru/download/458.

  17. L. V. Litvintseva, S. V. Ulyanov, and S. S. Ulyanov, “Design of robust knowledge bases of fuzzy controllers for intelligent control of substantially nonlinear dynamic systems: II. A soft computing optimizer and robustness of intelligent control systems,” J. Comput. Syst. Sci. Int. 45 (5), 744–771 (2006).

    Article  Google Scholar 

  18. D. Dong, Ch. Chen, Z. Chen, and Ch. Zhang, “Quantum mechanics helps in learning for more intelligent robots,” Chin. Phys. Lett. 23 (7), 1691–1694 (2006).

    Article  Google Scholar 

  19. M. Lukac and M. Perkowski, “Inductive learning of quantum behaviors,” Facta Univ. 20 (3), 561–586 (2007).

    Article  Google Scholar 

  20. E. Kagan and G. I. Ben, “Navigation of quantum-controlled mobile robots,” Recent Adv. Mobile Rob. 15, 311–220 (2011).

    Google Scholar 

  21. A. Bannikov, S. Egerton, V. Callaghan, and B. D. Johnson, “Quantum computing: Non-deterministic controllers for artificial intelligent agents,” in Proc. 5th Int. Workshop on Artificial Intelligence Techniques for Ambient Intelligence (AITAm’10) (Kuala Lumpur, Malaysia, 2010).

  22. S. P. Chatzis, D. Korkinof, and Y. Demiris, “A quantum-statistical approach toward robot learning by demonstration,” IEEE Trans. Rob. 28 (6), 1371–1381 (2012).

    Article  Google Scholar 

  23. M. Mannone, V. Seidita, and A. Chella, “Categories, quantum computing, and swarm robotics: A case study,” Mathematics 10, 372 (2022). https://doi.org/10.3390/math10030372

    Article  Google Scholar 

  24. Y. Li, A. H. Aghvami, and D. Dong, “Intelligent trajectory planning in UAV-mounted wireless networks: A quantum-inspired reinforcement learning perspective,” (2007). https://arxiv.org/pdf/2007.13418.

  25. A. Kumar, D. Pacheco, K. Kaushik, and J. Rodrigues, “Futuristic view of the internet of quantum drones: Review, challenges and research agenda,” Veh. Commun. 36, 100487 (2022). https://doi.org/10.1016/j.vehcom.2022.100487

  26. J.-A. Li, D. Dong, Z. Wei, and Y. Liu, “Quantum reinforcement learning during human decision-making,” Nat. Hum. Behav. 4, 294–307 (2020). https://www.nature.com/articles/s41562-019-0804-2.

    Article  Google Scholar 

  27. L. Lamata, M. Qaudrelli, W. C. de Silva, and P. Kumar, “Quantum mechatronics,” Electronics 10, 2483 (2021). https://doi.org/10.3390/electronics10202483

    Article  Google Scholar 

  28. L.-F. Qiao, J. Gao, Z. Jiao, and Z. Zhang, “Quantum go machine” (2007). https://arxiv.org/pdf/2007.12186v1.

  29. D. Widdows, J. Rani, and E. Pothos, “Quantum circuit components for cognitive decision making” (2023). https://arxiv.org/pdf/2302.03012v1.

  30. K. Domino, M. Koniorczyk, K. Krawiec, and K. Jalowiecki, “Quantum annealing in the NISQ era: Railway conflict management,” Entropy 25, 191 (2023). https://doi.org/10.3390/e25020191

    Article  MathSciNet  Google Scholar 

  31. Z. Huang, Q. Li, J. Zhao, and M. Song, “Variational quantum algorithm applied to collision avoidance of unmanned aerial vehicles,” Entropy 24, 1685 (2022). https://doi.org/10.3390/e24111685

    Article  MathSciNet  Google Scholar 

  32. P. Atchade, G. Alonso-Linaje, J. Albo-Canals, and D. Casado-Fauli, “QRobot: A quantum computing approach in mobile robot order picking and batching problem solver optimization,” Algorithms 14, 194 (2021). https://doi.org/10.3390/a14070194

    Article  Google Scholar 

  33. F. Vella, A. Chella, S. Gaglio, and G. Pilato, “A quantum planner for robot motion,” Mathematics 10, 2475 (2022). https://doi.org/10.3390/math10142475

    Article  Google Scholar 

  34. V. V. Korenkov, A. G. Reshetnikov, S. V. Ulyanov, P. V. Zrelov, and D. P. Zrelova, “Self-organized intelligent quantum controller: quantum deep learning and quantum genetic algorithm: QSCOptKBTM Toolkit,” in Proc. 6th Int. Workshop on Deep Learning in Computational Physics (DLCP2022) (JINR, Dubna, 2022).

  35. V. V. Koren’kov, A. G. Reshetnikov, S. V. Ul’yanov, P. V. Zrelov, and D. P. Zrelova, “Intelligent robotic control in extreme situations on the basis of quantum self-organizing controllers,” in Abstracts of the 33th Int. Scientific and Technical Conference “Extreme Robotics” (St. Petersburg, 2021), pp. 224–225 [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Reshetnikov, V. S. Ulyanov or S. V. Ulyanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshetnikov, A.G., Ulyanov, V.S. & Ulyanov, S.V. Intelligent Robust Control of Autonomous Robot: Quantum Self-Organization of Imperfect Knowledge Bases—Experiment. J. Comput. Syst. Sci. Int. 62, 884–902 (2023). https://doi.org/10.1134/S1064230723050131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064230723050131

Navigation