Skip to main content
Log in

On the capacity of multiple antenna systems

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

The significant role of multiple antenna techniques is vital to enable wireless systems to support the ever-rising demand for higher data rates and reliability. Thus, investigating these systems is continually important, and one of the essential aspects of this study is analyzing the capacity of such systems to gain insight into their performance. This paper presents several closed-form formulae to express the capacity of the multiple antenna system, by introducing newly derived finite and unconditionally valid solutions. It is also mathematically describing the outage probability of multiple antenna system in several scenarios. The numerical results show the tight fit between the obtained formulae and the Monte Carlo simulation outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Marzetta TL (2000) New approaches to high-capacity multiple-antenna wireless. In: Proceedings of the 2000 IEEE sensor array and multichannel signal processing workshop. SAM 2000 (Cat. No.00EX410), pp 423. https://doi.org/10.1109/SAM.2000.878043

  2. Zhang J, Björnson E, Matthaiou M, Ng DWK, Yang H, Love DJ (2019) Prospective multiple antenna technologies for beyond 5G

  3. Marzetta TL (2015) Massive mimo: An introduction. Bell Labs Tech J 20:11–22. https://doi.org/10.15325/BLTJ.2015.2407793

  4. Larsson EG, Edfors O, Tufvesson F, Marzetta TL (2014) Massive mimo for next generation wireless systems. IEEE Commun Mag 52(2):186–195. https://doi.org/10.1109/MCOM.2014.6736761

    Article  Google Scholar 

  5. Al-Wahhamy A, Al-Rizzo H, Buris NE (2020) Efficient evaluation of massive mimo channel capacity. IEEE Syst J 14(1):614–620. https://doi.org/10.1109/JSYST.2019.2900006

    Article  Google Scholar 

  6. Cao W, Dytso A, Shkel Y, Feng G, Poor HV (2019) Sum-capacity of the mimo many-access gaussian noise channel. IEEE Trans Commun 67(8):5419–5433. https://doi.org/10.1109/TCOMM.2019.2913365

    Article  Google Scholar 

  7. Bohli A, Bouallegue R (2019) How to meet increased capacities by future green 5g networks: a survey. IEEE Access 7:42220–42237. https://doi.org/10.1109/ACCESS.2019.2907284

    Article  Google Scholar 

  8. Björnson E, Hoydis J, Sanguinetti L (2018) Massive mimo has unlimited capacity. IEEE Trans Wirel Commun 17(1):574–590. https://doi.org/10.1109/TWC.2017.2768423

    Article  Google Scholar 

  9. Lee WCY (1988) Estimate of channel capacity in raleigh fading environment. In: 38th IEEE Vehicular technology conference, pp 582–584. https://doi.org/10.1109/VETEC.1988.195421

  10. Lee WCY (1990) Estimate of channel capacity in rayleigh fading environment. IEEE Trans Veh Technol 39(3):187–189. https://doi.org/10.1109/25.130999

    Article  Google Scholar 

  11. Gunther CG (1996) Comment on estimate of channel capacity in rayleigh fading environment. IEEE Trans Veh Technol 45(2):401–403. https://doi.org/10.1109/25.492915

    Article  Google Scholar 

  12. Alouini M, Goldsmith AJ (1999) Capacity of rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Trans Veh Technol 48(4):1165–1181. https://doi.org/10.1109/25.775366

    Article  Google Scholar 

  13. Khan E, Heneghan C (2004) Large mimo system channel capacity using replica analysis and grassmann variables: a closed form solution. In: 2004 IEEE 15th international symposium on personal, indoor and mobile radio communications (IEEE Cat. No.04TH8754), vol 3, pp 2018–20223. https://doi.org/10.1109/PIMRC.2004.1368352

  14. Bitra HR, Palanisamy P (2018) Application of hypergeometric function in mimo wireless systems. In: 2018  International conference on circuits and systems in digital enterprise technology (ICCSDET), pp 1–3. https://doi.org/10.1109/ICCSDET.2018.8821166

  15. Hyundong Shin, Jae Hong Lee (2003) Closed-form formulas for ergodic capacity of mimo rayleigh fading channels. In: IEEE International conference on communications, 2003. ICC ’03., vol 5, pp 2996–30005. https://doi.org/10.1109/ICC.2003.1203954

  16. Generalized Laguerre polynomials. http://functions.wolfram.com/05.08.06.0005.01. Accessed: 18 Feb 2020

  17. Humayun Kabir SM, Yoon G (2008) Closed form capacity analysis of mimo wireless channels. In: 2008 Canadian Conference on Electrical and Computer Engineering, pp 000199–000202. https://doi.org/10.1109/CCECE.2008.4564523

  18. Telatar IE (1995) Capacity of multi-antenna gaussian channels. In: AT &T Bell Laboratories, Internal Tech. Memo

  19. Jeffrey A, Dai H-H (2008) Handbook of mathematical formulas and integrals, 4th edn. Elsevier Inc

  20. Prabhakar TR, Rekha S (1978) Some results on the polynomials \({L_n^{\alpha ,\beta }(x)}\).The Rocky Mountain Journal of Mathematics 8(4):751–754

  21. Gradshteyn IS, Ryzkik IM (2015) Table of Integrals, Series and Products, 8th edn. Academic Press of Elsevier

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Abu Ella.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we define the integral \(\mathcal {I}(\mu ,\alpha )\) used in (10). An intractable solution of this integral can be found in ([21], \(\S ~4.222.8^{12}\), p. 534 or in \(\S ~4.337.5^{12}\), p. 576). Therefore, we decided to compute a more suitable solution of this integral as elaborated in the following steps

$$\begin{aligned} \mathcal {I}(\mu ,\alpha ) = \int _{0}^{\infty }\log (1+\alpha x)\textrm{e}^{-x}x^{\mu }dx \end{aligned}$$
(A1)

We use the integration by parts to compute \(\mathcal {I}(\mu ,\alpha )=\int _{0}^{\infty }udv\). So, let’s assume \(u = \log (1+\alpha x)\), then we have

$$\begin{aligned} du = \frac{\alpha }{1+\alpha x} dx \end{aligned}$$
(A2)

and let \(dv =\textrm{e}^{-x}x^\mu \) and assume \(\tau = \mu +1\), so, we have

$$\begin{aligned} dv = \textrm{e}^{-x}x^{\tau -1} \end{aligned}$$
(A3)

Then, using ([21], \(\S ~2.321.2^{11}\), p. 106) we can find v

$$\begin{aligned} v= & {} -\textrm{e}^{-x}(\tau -1)!\sum _{l=1}^{\tau }\frac{x^{\tau -l}}{(\tau -l)!}\nonumber \\= & {} -\textrm{e}^{-x}\mu !~\sum _{l=1}^{\mu +1}\frac{x^{\mu -l+1}}{(\mu -l+1)!}\nonumber \\= & {} -\textrm{e}^{-x}\mu !~\sum _{l=0}^{\mu }\frac{x^{\mu -l}}{(\mu -l)!} \end{aligned}$$
(A4)

Thus

$$\begin{aligned} \mathcal {I}(\mu ,\alpha )= & {} \int _{0}^{\infty }u dv \nonumber \\= & {} \lim _{x\rightarrow \infty }(uv)-\lim _{x\rightarrow 0}(uv)-\int _{0}^{\infty }v du \end{aligned}$$
(A5)

The first two terms of (A5) are equal to zero. Therefore,

$$\begin{aligned} \mathcal {I}(\mu ,\alpha )= & {} \int _{0}^{\infty }\textrm{e}^{-x}\mu !~\sum _{l=0}^{\mu }\frac{x^{\mu -l}}{(\mu -l)!}\times \frac{\alpha }{1+\alpha x} dx\nonumber \\= & {} \mu !~\sum _{l=0}^{\mu }\frac{\alpha }{{(\mu -l)!}}\int _{0}^{\infty }\frac{\textrm{e}^{-x}x^{\mu -l}}{1+\alpha x} dx\nonumber \\= & {} \mu !~\textrm{e}^{1/\alpha }\sum _{l=0}^{\mu }\frac{1}{{(\mu -l)!}}\left( \frac{1}{\alpha }\right) ^{\mu -l}\nonumber \\{} & {} \times ~\Gamma (\mu -l)\Gamma \left[ 1-(\mu -l+1),1/\alpha \right] \nonumber \\= & {} \mu !~\textrm{e}^{1/\alpha }\!\sum _{l=0}^{\mu }\left( \frac{1}{\alpha }\right) ^{\mu -l}\Gamma \left[ 1\!-\!(\mu \!-\!l\!+\!1),\frac{1}{\alpha }\right] \end{aligned}$$
(A6)

Now, let \(n =\mu -l+1\)

$$\begin{aligned} \mathcal {I}(\mu ,\alpha ) = \mu !~\textrm{e}^{1/\alpha }\sum _{l=0}^{\mu }\left( \frac{1}{\alpha }\right) ^{n-1}\Gamma \left[ 1-n,1/\alpha \right] \end{aligned}$$
(A7)

and given that \(E_n(z)=z^{n-1}\Gamma (1-n,z)\), we have

$$\begin{aligned} \mathcal {I}(\mu ,\alpha )= & {} \mu !~\textrm{e}^{1/\alpha }\sum _{l=0}^{\mu }E_{\mu -l+1}\left( \frac{1}{\alpha }\right) \nonumber \\= & {} \mu !~\textrm{e}^{1/\alpha }\sum _{l=0}^{\mu }E_{l+1}\left( \frac{1}{\alpha }\right) \nonumber \\= & {} \mu !~\textrm{e}^{1/\alpha }\sum _{l=1}^{\mu +1}E_{l}\left( \frac{1}{\alpha }\right) \end{aligned}$$
(A8)

But from (A3) we realize that v can be given in another form

$$\begin{aligned} v= & {} \ -\Gamma (\mu +1,x) \end{aligned}$$
(A9)

This enables us to express \(\mathcal {I}(\mu , \alpha )\) in terms of Meijer G-function as follows

$$\begin{aligned} \mathcal {I}(\mu ,\alpha )= & {} -\int _{0}^{\infty }vdu \nonumber \\= & {} \int _{0}^{\infty }\Gamma (\mu +1,x)\frac{\alpha }{1+\alpha x}dx \nonumber \\= & {} -\alpha \cdot G_{2,3}^{3,1}\left( \frac{1}{\alpha } \Bigg |\begin{array} {c} 1,2 \\ 1,1,\mu +2 \\ \end{array} \right) \nonumber \\= & {} G_{2,3}^{3,1} \left( \frac{1}{\alpha } \Bigg |\begin{array} {c} 0,1 \\ 0,0,\mu +1 \\ \end{array} \right) \end{aligned}$$
(A10)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu Ella, O. On the capacity of multiple antenna systems. Ann. Telecommun. (2023). https://doi.org/10.1007/s12243-023-01000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12243-023-01000-6

Keywords

Navigation