Skip to main content
Log in

An Intriguing Structural Modification in Neutrophil Migration Across Blood Vessels to Inflammatory Sites: Progress in the Core Mechanisms

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The role and function of neutrophils are well known, but we still have incomplete understanding of the mechanisms by which neutrophils migrate from blood vessels to inflammatory sites. Neutrophil migration is a complex process that involves several distinct steps. To resist the blood flow and maintain their rolling, neutrophils employ tether and sling formation. They also polarize and form pseudopods and uropods, guided by hierarchical chemotactic agents that enable precise directional movement. Meanwhile, chemotactic agents secreted by neutrophils, such as CXCL1, CXCL8, LTB4, and C5a, can recruit more neutrophils and amplify their response. In the context of diapedesis neutrophils traverse the endothelial cells via two pathways: the transmigratory cup and the lateral border recycling department. These structures aid in overcoming the narrow pore size of the endothelial barrier, resulting in more efficient transmembrane migration. Interestingly, neutrophils exhibit a preference for the paracellular pathway over the transcellular pathway, likely due to the former’s lower resistance. In this review, we will delve into the intricate process of neutrophil migration by focusing on critical structures that underpins this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Filippi, M. D. (2019). Neutrophil transendothelial migration: updates and new perspectives. Blood, 133(20), 2149–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liew, P. X. & Kubes, P. (2019). The Neutrophil’s Role During Health and Disease. Physiological Reviews, 99(2), 1223–1248.

    Article  CAS  PubMed  Google Scholar 

  3. Mutua, V. & Gershwin, L. J. (2021). A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clinical Reviews in Allergy & Immunology, 61(2), 194–211.

    Article  CAS  Google Scholar 

  4. Kolaczkowska, E. & Kubes, P. (2013). Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology, 13(3), 159–175.

    Article  CAS  PubMed  Google Scholar 

  5. Sundd, P., et al. (2010). Quantitative dynamic footprinting microscopy reveals mechanisms of neutrophil rolling. Nature Reviews Immunology, 7(10), 821–824.

    CAS  Google Scholar 

  6. Sundd, P., et al. (2012). ‘Slings’ enable neutrophil rolling at high shear. Nature, 488(7411), 399–403

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Marmon, S., et al. (2009). Transcellular migration of neutrophils is a quantitatively significant pathway across dermal microvascular endothelial cells. Experimental Dermatology, 18(1), 88–90.

    Article  PubMed  Google Scholar 

  8. Carman, C. V. & Springer, T. A. (2004). A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. Journal of Cell Biology, 167(2), 377–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Springer, T. A. (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell, 76(2), 301–314

    Article  CAS  PubMed  Google Scholar 

  10. Heit, B., et al. (2002). An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. Journal of Cell Biology, 159(1), 91–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Phillipson, M. & Kubes, P. (2011). The neutrophil in vascular inflammation. Nature Medicine, 17(11), 1381–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ley, K., et al. (2007). Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews Immunology, 7(9), 678–689.

    Article  CAS  PubMed  Google Scholar 

  13. Petri, B., Phillipson, M. &Kubes, P. (2008). The physiology of leukocyte recruitment: an in vivo perspective. Journal of Immunology, 180(10), 6439–6446.

    Article  CAS  Google Scholar 

  14. Zarbock, A., et al. (2011). Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood, 118(26), 6743–6751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Alon, R., et al. (1996). Interactions through L-selectin between leukocytes and adherent leukocytes nucleate rolling adhesions on selectins and VCAM-1 in shear flow. Journal of Cell Biology, 135(3), 849–865

    Article  CAS  PubMed  Google Scholar 

  16. Ivetic, A., Hoskins Green, H. L., & Hart, S. J. (2019). L-selectin: A Major Regulator of Leukocyte Adhesion, Migration and Signaling. Frontiers in Immunology, 10, 1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shao, J. Y., Ting-Beall, H. P. & Hochmuth, R. M. (1998). Static and dynamic lengths of neutrophil microvilli. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 6797–6802

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Schmidtke, D. W., & Diamond, S. L. (2000). Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. Journal of Cell Biology, 149(3), 719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marki, A., et al. (2021). Elongated neutrophil-derived structures are blood-borne microparticles formed by rolling neutrophils during sepsis. Journal of Experimental Medicine, 218(3).

  20. Wang, S., et al. (2018). S100A8/A9 in Inflammation. Frontiers in Immunology, 9, 1298

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu, J., et al. (2003). Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell, 114(2), 201–214.

    Article  CAS  PubMed  Google Scholar 

  22. Yang, H. W., Collins, S. R., & Meyer, T. (2016). Locally excitable Cdc42 signals steer cells during chemotaxis. Nature Cell Biology, 18(2), 191–201

    Article  CAS  PubMed  Google Scholar 

  23. Bell, G. R. R., et al. (2021). Optogenetic control of receptors reveals distinct roles for actin- and Cdc42-dependent negative signals in chemotactic signal processing. Nature Communications, 12(1), 6148

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. McCormick, B., Chu, J. Y., & Vermeren, S. (2019). Cross-talk between Rho GTPases and PI3K in the neutrophil. Small GTPases, 10(3), 187–195

    Article  CAS  PubMed  Google Scholar 

  25. Hadjitheodorou, A., et al. (2021). Directional reorientation of migrating neutrophils is limited by suppression of receptor input signaling at the cell rear through myosin II activity. Nature Communications, 12(1), 6619.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Van Keymeulen, A., et al. (2006). To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front. Journal of Cell Biology, 174(3), 437–445

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lam, P. Y., & Huttenlocher, A. (2013). Interstitial leukocyte migration in vivo. Current Opinion in Cell Biology, 25(5), 650–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Houk, A. R., et al. (2012). Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell, 148(1-2), 175–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Szczur, K., Zheng, Y., & Filippi, M. D. (2009). The small Rho GTPase Cdc42 regulates neutrophil polarity via CD11b integrin signaling. Blood, 114(20), 4527–4537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar, S., et al. (2012). Cdc42 regulates neutrophil migration via crosstalk between WASp, CD11b, and microtubules. Blood, 120(17), 3563–3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brunetti, R. M., et al. (2022). WASP integrates substrate topology and cell polarity to guide neutrophil migration. Journal of Cell Biol, 221(2), 1–23.

    Article  Google Scholar 

  32. Lieber, A. D. et al. (2013). Membrane tension in rapidly moving cells is determined by cytoskeletal forces. Current Biology, 23(15), 1409–1417

    Article  CAS  PubMed  Google Scholar 

  33. Town, J. P., & Weiner, O. D. (2023). Local negative feedback of Rac activity at the leading edge underlies a pilot pseudopod-like program for amoeboid cell guidance. PLoS Biology, 21(9), e3002307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gambardella, L., & Vermeren, S. (2013). Molecular players in neutrophil chemotaxis-focus on PI3K and small GTPases. Journal of Leukocyte Biology, 94(4), 603–612

    Article  CAS  PubMed  Google Scholar 

  35. Weiner, O. D. et al. (2002). A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nature of Cell Biology, 4(7), 509–513

    Article  CAS  Google Scholar 

  36. Wang, F., et al. (2002). Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nature of Cell Biology, 4(7), 513–518

    Article  CAS  Google Scholar 

  37. Kuiper, J. W., et al. (2011). Rac regulates PtdInsP3 signaling and the chemotactic compass through a redox-mediated feedback loop. Blood, 118(23), 6164–6171

    Article  CAS  PubMed  Google Scholar 

  38. Hirsch, E. et al. (2000). Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science, 287(5455), 1049–1053

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Foxman, E. F., Campbell, J. J., & Butcher, E. C. (1997). Multistep navigation and the combinatorial control of leukocyte chemotaxis. Journal of Cell Biology, 139(5), 1349–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Phillipson, M., & Kubes, P. (2011). The neutrophil in vascular inflammation. Nature Medicine, 17(11), 1381–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luster, A. D. (1998). Chemokines-chemotactic cytokines that mediate inflammation. The New England Journal of Medicine, 338(7), 436–445

    Article  CAS  PubMed  Google Scholar 

  42. Damaj, B. B. et al. (1996). Physical association of Gi2alpha with interleukin-8 receptors. Journal of Biology Chemistry, 271(22), 12783–12789

    Article  CAS  Google Scholar 

  43. Rickert, P. et al. (2000). Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends in Cell Biology, 10(11), 466–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Spisani, S. et al. (2005). A ‘pure’ chemoattractant formylpeptide analogue triggers a specific signalling pathway in human neutrophil chemotaxis. The FEBS Journal, 272(4), 883–891

    Article  CAS  PubMed  Google Scholar 

  45. Liu, X. et al. (2012). Bidirectional regulation of neutrophil migration by mitogen-activated protein kinases. Nature Reviews Immunology, 13(5), 457–464.

    Article  CAS  Google Scholar 

  46. Mazaki, Y., et al. (2006). Neutrophil direction sensing and superoxide production linked by the GTPase-activating protein GIT2. Nature Immunology, 7(7), 724–731.

    Article  CAS  PubMed  Google Scholar 

  47. Subramanian, K. K., et al. (2007). Tumor suppressor PTEN is a physiologic suppressor of chemoattractant-mediated neutrophil functions. Blood, 109(9), 4028–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Billadeau, D. D. (2008). PTEN gives neutrophils direction. Nature Immunology, 9(7), 716–718.

    Article  CAS  PubMed  Google Scholar 

  49. Chen, Y., et al. (2006). ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science, 314(5806), 1792–1795

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Majumdar, R., Sixt, M. & Parent, C. A. (2014). New paradigms in the establishment and maintenance of gradients during directed cell migration. Current Opinion in Cell Biology, 30, 33–40.

    Article  CAS  PubMed  Google Scholar 

  51. Afonso, P. V., et al. (2012). LTB4 is a signal-relay molecule during neutrophil chemotaxis. Developmental Cell, 22(5), 1079–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tecchio, C. & Cassatella, M. A. (2016). Neutrophil-derived chemokines on the road to immunity. Seminars in Immunology, 28(2), 119–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Camous, L., et al. (2011). Complement alternative pathway acts as a positive feedback amplification of neutrophil activation. Blood, 117(4), 1340–1349

    Article  CAS  PubMed  Google Scholar 

  54. Sadik, C. D., et al. (2012). Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and FcγR signaling. Proceedings of the National Academy of Sciences of the United States of America, 109(46), E3177–E3185.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Subramanian, B. C., et al. (2022). The LTB4-BLT1 axis regulates actomyosin and β2-integrin dynamics during neutrophil extravasation. Journal of Cell Biology, 219(10), 1–14.

    Google Scholar 

  56. Majumdar, R., et al. (2021). Exosomes mediate LTB4 release during neutrophil chemotaxis. PLoS Biology, 19(7), e3001271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Phillipson, M., et al. (2006). Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. Journal of Experimental Medicine, 203(12), 2569–2575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jenne, C. N., Wong, C. H., Zemp, F. J., McDonald, B., Rahman, M. M., Forsyth, P. A., McFadden, G. & Kubes, P. (2013). Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe, 13(2), 169–180.

    Article  CAS  PubMed  Google Scholar 

  59. Carman, C. V., et al. (2007). Transcellular diapedesis is initiated by invasive podosomes. Immunity, 26(6), 784–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ridley, A. J., et al. (2003). Cell migration: integrating signals from front to back. Science, 302(5651), 1704–1709

    Article  CAS  PubMed  ADS  Google Scholar 

  61. Carman, C. V. (2009). Mechanisms for transcellular diapedesis: probing and pathfinding by ‘invadosome-like protrusions’. Journal of Cell Science, 122(Pt 17), 3025–3035.

    Article  CAS  PubMed  Google Scholar 

  62. Martinelli, R., et al. (2014). Probing the biomechanical contribution of the endothelium to lymphocyte migration: diapedesis by the path of least resistance. Journal of Cell Science, 127(Pt 17), 3720–3734.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shaw, S. K., et al. (2004). Coordinated redistribution of leukocyte LFA-1 and endothelial cell ICAM-1 accompany neutrophil transmigration. Journal of Experimental Medicine, 200(12), 1571–1580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barreiro, O., et al. (2005). Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood, 105(7), 2852–2861

    Article  CAS  PubMed  Google Scholar 

  65. Singh, V. et al. (2023). ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders. Clinica Chimica Acta, 548, 117487

    Article  CAS  Google Scholar 

  66. Staunton, D. E., Dustin, M. L., & Springer, T. A. (1989). Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature, 339(6219), 61–64

    Article  CAS  PubMed  ADS  Google Scholar 

  67. Huang, M. T., et al. (2006). ICAM-2 mediates neutrophil transmigration in vivo: evidence for stimulus specificity and a role in PECAM-1-independent transmigration. Blood, 107(12), 4721–4727

    Article  CAS  PubMed  Google Scholar 

  68. Sun, J., et al. (2000). Contributions of the extracellular and cytoplasmic domains of platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) in regulating cell-cell localization. Journal of Cell Science, 113(Pt 8), 1459–1469.

    Article  CAS  PubMed  Google Scholar 

  69. Muller, W. A. et al. (1993). PECAM-1 is required for transendothelial migration of leukocytes. Journal of Experimental Medicine, 178(2), 449–460.

    Article  CAS  PubMed  Google Scholar 

  70. Takheaw, N., et al. (2019). Interaction of CD99 and its ligand upregulates IL-6 and TNF-α upon T cell activation. PLoS One, 14(5), e0217393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gelin, C., et al. (1989). The E2 antigen, a 32 kd glycoprotein involved in T-cell adhesion processes, is the MIC2 gene product. The EMBO Journal, 8(11), 3253–3259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schenkel, A. R., et al. (2002). CD99 plays a major role in the migration of monocytes through endothelial junctions. Nature Immunology, 3(2), 143–150.

    Article  CAS  PubMed  Google Scholar 

  73. Watson, R. L., et al. (2015). Endothelial CD99 signals through soluble adenylyl cyclase and PKA to regulate leukocyte transendothelial migration. Journal of Experimental Medicine, 212(7), 1021–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Martìn-Padura, I., et al (1998). Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. Journal of Cell Biology, 142(1), 117–127.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Johnson-Léger, C. A., et al. (2002). Junctional adhesion molecule-2 (JAM-2) promotes lymphocyte transendothelial migration. Blood, 100(7), 2479–2486

    Article  PubMed  Google Scholar 

  76. Ludwig, R. J., et al. (2005). Junctional adhesion molecules (JAM)-B and -C contribute to leukocyte extravasation to the skin and mediate cutaneous inflammation. Journal of Investigative Dermatology, 125(5), 969–976.

    Article  CAS  PubMed  Google Scholar 

  77. Bradfield, P. F., et al. (2007). JAM-C regulates unidirectional monocyte transendothelial migration in inflammation. Blood, 110(7), 2545–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Petri, B., et al. (2011). Endothelial LSP1 is involved in endothelial dome formation, minimizing vascular permeability changes during neutrophil transmigration in vivo. Blood, 117(3), 942–952

    Article  CAS  PubMed  Google Scholar 

  79. Sumagin, R., et al. (2014). Transmigrated neutrophils in the intestinal lumen engage ICAM-1 to regulate the epithelial barrier and neutrophil recruitment. Mucosal Immunology, 7(4), 905–915.

    Article  CAS  PubMed  Google Scholar 

  80. Liu, G., et al. (2012). ICAM-1-activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration. Blood, 120(9), 1942–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Allport, J. R., Muller, W. A. & Luscinskas, F. W. (2000). Monocytes induce reversible focal changes in vascular endothelial cadherin complex during transendothelial migration under flow. Journal of Cell Biology, 148(1), 203–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mamdouh, Z., et al. (2003). Targeted recycling of PECAM from endothelial surface-connected compartments during diapedesis. Nature, 421(6924), 748–753

    Article  CAS  PubMed  ADS  Google Scholar 

  83. Mamdouh, Z., Mikhailov, A. & Muller, W. A. (2009). Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment. Journal of Experimental Medicine, 206(12), 2795–2808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sullivan, D. P., Seidman, M. A. & Muller, W. A. (2013). Poliovirus receptor (CD155) regulates a step in transendothelial migration between PECAM and CD99. The American Journal of Pathology, 182(3), 1031–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sullivan, D. P., & Muller, W. A. (2014). Neutrophil and monocyte recruitment by PECAM, CD99, and other molecules via the LBRC. Semin Immunopathol, 36(2), 193–209

    Article  CAS  PubMed  Google Scholar 

  86. Mamdouh, Z., Kreitzer, G. E. & Muller, W. A. (2008). Leukocyte transmigration requires kinesin-mediated microtubule-dependent membrane trafficking from the lateral border recycling compartment. Journal of Experimental Medicine, 205(4), 951–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sullivan, D. P., et al. (2019). Endothelial IQGAP1 regulates leukocyte transmigration by directing the LBRC to the site of diapedesis. Journal of Experimental Medicine, 216(11), 2582–2601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vestweber, D., et al. (2009). Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player. Trends in Cell Biology, 19(1), 8–15

    Article  CAS  PubMed  Google Scholar 

  89. Dejana, E., Orsenigo, F., & Lampugnani, M. G. (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science, 121(Pt 13), 2115–2122

    Article  CAS  PubMed  Google Scholar 

  90. Feng, G., et al. (2015). Segregation of VE-cadherin from the LBRC depends on the ectodomain sequence required for homophilic adhesion. Journal of Cell Science, 128(3), 576–588

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gonzalez, A. M., Cyrus, B. F., & Muller, W. A. (2016). Targeted Recycling of the Lateral Border Recycling Compartment Precedes Adherens Junction Dissociation during Transendothelial Migration. The American Journal of Pathology, 186(5), 1387–1402

    Article  PubMed  PubMed Central  Google Scholar 

  92. Muller, W. A. (2016). Transendothelial migration: unifying principles from the endothelial perspective. Immunological Reviews, 273(1), 61–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vestweber, D. (2008). VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(2), 223–232.

    Article  CAS  PubMed  Google Scholar 

  94. Wang, S., et al. (2022). Mechanosensation by endothelial PIEZO1 is required for leukocyte diapedesis. Blood, 140(3), 171–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arif, N., et al. (2021). PECAM-1 supports leukocyte diapedesis by tension-dependent dephosphorylation of VE-cadherin. The EMBO Journal, 40(9), e106113

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kenne, E., et al. (2019). Neutrophils engage the kallikrein-kinin system to open up the endothelial barrier in acute inflammation. The FASEB Jounal, 33(2), 2599–2609

    Article  CAS  Google Scholar 

  97. Woodfin, A., et al. (2009). Endothelial cell activation leads to neutrophil transmigration as supported by the sequential roles of ICAM-2, JAM-A, and PECAM-1. Blood, 113(24), 6246–6257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lou, O., et al. (2007). CD99 is a key mediator of the transendothelial migration of neutrophils. Journal of Immunology, 178(2), 1136–1143

    Article  CAS  Google Scholar 

  99. Arts, J. J., et al. (2021). Endothelial junctional membrane protrusions serve as hotspots for neutrophil transmigration. Elife, 10, e66074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schaefer, A., et al. (2014). Actin-binding proteins differentially regulate endothelial cell stiffness, ICAM-1 function and neutrophil transmigration. Journal of Cell Science, 127(Pt 20), 4470–4482

    CAS  PubMed  Google Scholar 

  101. Girbl, T., et al. (2018). Distinct Compartmentalization of the Chemokines CXCL1 and CXCL2 and the Atypical Receptor ACKR1 Determine Discrete Stages of Neutrophil Diapedesis. Immunity, 49(6), 1062–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Thiriot, A., et al. (2017). Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues. BMC Biology, 15(1), 45

    Article  PubMed  PubMed Central  Google Scholar 

  103. Reglero-Real, N., et al. (2021). Autophagy modulates endothelial junctions to restrain neutrophil diapedesis during inflammation. Immunity, 54(9), 1989–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. von Wedel-Parlow, M., et al. (2011). Neutrophils cross the BBB primarily on transcellular pathways: an in vitro study. Brain Research, 1367, 62–76

    Article  Google Scholar 

  105. Wewer, C., et al. (2011). Transcellular migration of neutrophil granulocytes through the blood-cerebrospinal fluid barrier after infection with Streptococcus suis. Journal of Neuroinflammation, 8, 51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Millán, J., et al. (2006). Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nature Cell Biology, 8(2), 113–123

    Article  PubMed  Google Scholar 

  107. Dvorak, A. M. & Feng, D. (2001). The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. Journal of Histochemistry and Cytochemistry,49(4), 419–432

    Article  CAS  PubMed  Google Scholar 

  108. Liao, D., et al. (2022). Atomic Level Dissection of the Platelet Endothelial Cell Adhesion Molecule 1 (PECAM-1) Homophilic Binding Interface: Implications for Endothelial Cell Barrier Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 42(2), 193–204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to all authors for their efforts in this article

Author information

Authors and Affiliations

Authors

Contributions

Z.W. and Y.G. wrote the original manuscript. B.W., Y.Z. and L.W. reviews and revised the original manuscript. Q.L. and L.W. prepared all the figures in this manuscript. All authors reviews the manuscript.

Corresponding author

Correspondence to Bing Wan.

Ethics declarations

Conflict of interest

All authors have consented to the submission of the review to the journal. The authors declare no competing interest.

Consent for publication

All authors have consented to the submission of the review to the journal.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Guo, Y., Zhang, Y. et al. An Intriguing Structural Modification in Neutrophil Migration Across Blood Vessels to Inflammatory Sites: Progress in the Core Mechanisms. Cell Biochem Biophys 82, 67–75 (2024). https://doi.org/10.1007/s12013-023-01198-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-023-01198-1

Keywords

Navigation