Skip to main content

Advertisement

Log in

Synthesis and Characterization of Cosmetic Grade Ionic Liquids and Their Application as Skin Whitening Agents

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Recent developments emphasize the ready conversion of known active pharmaceutical ingredients (APIs) into novel phases like ionic liquids (known green solvents) to obtain striking features such as improved solubilities and dissolution rates. This dissolution enhancement is important for the pharmacodynamics and pharmacokinetics of the drug. For this purpose, an active cation can be combined with an active anion to synthesize dual functionality liquid.

Methods

In this work, we synthesized two novel ionic liquids, cholinium arbutinate (IL-1) and cholinium glutathionate (IL-2), from cosmetic grade components and evaluated their prospective applications as skin whitening. For this purpose, two known whitening acids, arbutin and glutathione, were neutralized with choline hydroxide. Synthesized ionic liquids were characterized via NMR and FTIR as well as evaluated for their potent biological properties involving antibacterial, antifungal, cytotoxicity, and de-pigmenting activity.

Results

The results suggested that synthesized ionic liquids can be used as skin whitening agents as they can prevent bacterial attack, protect from cell oxidation, and also exhibit cell compatibility. Furthermore, these novel synthesized compounds were observed to have de-pigmenting activity.

Conclusion

The prepared whitening agents would not cause any harm to the skin and would inhibit the growth of bacteria and oxidation of cells, thus preventing cell damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Available on request.

References

  1. Cull S, Holbrey J, Vargas-Mora V, Seddon K, Lye G. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol Bioeng. 2000;69:227–33.

    Article  CAS  PubMed  Google Scholar 

  2. Fukaya Y, Iizuka Y, Sekikawa K, Ohno H. Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem. 2007;9:1155–7.

    Article  CAS  Google Scholar 

  3. Shonnard DR, Allen DT, Nguyen N, Austin SW, Hesketh R. Green engineering education through a US EPA/Academia collaboration. Environ Sci Technol. 2003;37:5453–62.

    Article  CAS  PubMed  Google Scholar 

  4. Blanchard L, Hancu D, Beckman E, Brennecke J. Ionic liquid/CO2 biphasic systems: new media for green processing. Nature. 1999;399:28–9.

    Article  Google Scholar 

  5. Bonhote P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem. 1996;35:1168–78.

    Article  CAS  PubMed  Google Scholar 

  6. Bonhôte P, Dias A-P, Armand M, Papageorgiou N, Kalyanasundaram K, Grätzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem. 1998;37:166–166.

    Article  PubMed  Google Scholar 

  7. Broh-Kahn RH. Choline salicylate: a new, effective, and well-tolerated analgesic, anti-inflammatory, and antipyretic agent. Int Rec Med. 1960;173:217–33.

    CAS  PubMed  Google Scholar 

  8. Li X, Ma N, Zhang L, Ling G, Zhang P. Applications of choline-based ionic liquids in drug delivery. Int J Pharm. 2022;612:9.

    Article  Google Scholar 

  9. Satti MK, Nayyer M, Alshamrani M, Kaleem M, Salawi A, Safhi AY, Alsalhi A, Sabei FY, Khan AS, Muhammad N. Synthesis, characterization, and investigation of novel ionic liquid-based tooth bleaching gels: a step towards safer and cost-effective cosmetic dentistry. Molecules. 2023;28:3131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bashir F, Muhammad N, Khan NH, Rahim A, Ahamad P, Khan AS, Ullah Z, Samie M. In Green sustainable process for chemical and environmental engineering and science. 193–209. (Elsevier, 2021).

  11. Yasir M, Goyal A, Sonthalia S. Corticosteroid adverse effects. 2018.

  12. Guo J, Wu H, Du L, Fu Y. Determination of Brilliant Blue FCF in food and cosmetic samples by ionic liquid independent disperse liquid–liquid micro-extraction. Anal Methods. 2013;5:4021–6.

    Article  CAS  Google Scholar 

  13. Lu SC. Regulation of glutathione synthesis. Mol Aspects Med. 2009;30:42–59.

    Article  CAS  PubMed  Google Scholar 

  14. Oliver AE, Crowe LM, De Araujo PS, Fisk E, Crowe JH. Arbutin inhibits PLA2 in partially hydrated model systems. Biochimica et Biophysica Acta (BBA)-Lipids Lipid Metab. 1996;1302:69–78.

  15. Muhammad N, Hossain MI, Man Z, El-Harbawi M, Bustam MA, Noaman YA, Mohamed Alitheen NB, Ng MK, Hefter G, Yin C-Y. Synthesis and physical properties of choline carboxylate ionic liquids. J Chem Eng Data. 2012;57:2191–6.

    Article  CAS  Google Scholar 

  16. Funayama M, Arakawa H, Yamamoto R, Nishino T, Shin T, Murao S. Effects of α-and β-arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci Biotechnol Biochem. 1995;59:143–4.

    Article  CAS  PubMed  Google Scholar 

  17. Patil M, Patil K, Ngabire D, Seo Y, Kim G. Phytochemical, antioxidant and antibacterial activity of black tea (Camellia sinensis). Int J Pharmacogn Phytochem Res. 2016;8:341–6.

    CAS  Google Scholar 

  18. Zhang H, Wu Z, Suo Y, Wang J, Zheng L, Wang Y. Gene expression and flavonol biosynthesis are induced by ultraviolet-B and salt stresses in Reaumuria trigyna. Biol Plant. 2017;61:246–54.

    Article  CAS  Google Scholar 

  19. Duh P-D, Tu Y-Y, Yen G-C. Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). LWT-Food Sci Tech. 1999;32:269–77.

    Article  CAS  Google Scholar 

  20. Jan S, Khan MR, Rashid U, Bokhari J. Assessment of antioxidant potential, total phenolics and flavonoids of different solvent fractions of Monotheca buxifolia fruit. Osong Public Health Res Perspect. 2013;4:246–54.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mashwani Z-U-R, Khan MA, Irum S, Ahmad M. Antioxidant potential of root bark of Berberis lycium Royle. from Galliyat, Western Himalaya. Pak J Bot. 2013;45:231–4.

    CAS  Google Scholar 

  22. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269:337–41.

    Article  CAS  PubMed  Google Scholar 

  23. Pernak J, Sobaszkiewicz K, Mirska I. Anti-microbial activities of ionic liquids. Green Chem. 2003;5:52–6.

    Article  CAS  Google Scholar 

  24. Trewyn BG, Whitman CM, Lin VS-Y. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents. Nano Lett. 2004;4:2139–43.

    Article  CAS  Google Scholar 

  25. Kanjanamekanant K, Limpuangthip N, Arksornnukit M. Physical and mechanical properties of antifungal ionic liquid-incorporated dental tissue conditioner. Mater Sci Appl. 2017;8:376.

    CAS  Google Scholar 

  26. Rampersad SN. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors. 2012;12:12347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin VC, Ding H-Y, Tsai P-C, Wu J-Y, Lu Y-H, Chang T-S. In vitro and in vivo melanogenesis inhibition by biochanin A from Trifolium pratense. Biosci Biotechnol Biochem. 2011;75:914–8.

    Article  CAS  PubMed  Google Scholar 

  28. Gendreau I, Angers L, Jean J, Pouliot R. In Regenerative medicine and tissue engineering (InTech, 2013).

  29. Lehraiki A, Abbe P, Cerezo M, Rouaud F, Regazzetti C, Chignon-Sicard B, Passeron T, Bertolotto C, Ballotti R, Rocchi S. Inhibition of melanogenesis by the antidiabetic metformin. J Investig Dermatol. 2014;134:2589–97.

    Article  CAS  PubMed  Google Scholar 

  30. Dumas L, Bonnaud L, Olivier M, Poorteman M, Dubois P. Arbutin-based benzoxazine: en route to an intrinsic water soluble biobased resin. Green Chem. 2016;18:4954–60.

    Article  CAS  Google Scholar 

  31. Gupta A, Verma NC, Khan S, Nandi CK. Carbon dots for naked eye colorimetric ultrasensitive arsenic and glutathione detection. Biosens Bioelectron. 2016;81:465–72.

    Article  CAS  PubMed  Google Scholar 

  32. Antosova A, Gazova Z, Fedunova D, Valusova E, Bystrenova E, Valle F, Daxnerova Z, Biscarini F, Antalik M. Anti-amyloidogenic activity of glutathione-covered gold nanoparticles. Mater Sci Eng, C. 2012;32:2529–35.

    Article  CAS  Google Scholar 

  33. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005;53:4290–302.

    Article  CAS  PubMed  Google Scholar 

  34. Bang SH, Han SJ, Kim DH. Hydrolysis of arbutin to hydroquinone by human skin bacteria and its effect on antioxidant activity. J Cosmet Dermatol. 2008;7:189–93.

    Article  PubMed  Google Scholar 

  35. Takebayashi J, Ishii R, Chen J, Matsumoto T, Ishimi Y, Tai A. Reassessment of antioxidant activity of arbutin: multifaceted evaluation using five antioxidant assay systems. Free Radical Res. 2010;44:473–8.

    Article  CAS  Google Scholar 

  36. Ehrlich K, Ehrlich K, Viirlaid S, Ehrlich K, Viirlaid S, Mahlapuu R, Saar K, Kullisaar T, Zilmer M, Langel Ü. Design, synthesis and properties of novel powerful antioxidants, glutathione analogues. Free Radical Res. 2007;41:779–87.

    Article  CAS  Google Scholar 

  37. Gozzo A, Lesieur D, Duriez P, Fruchart J-C, Teissier E. Structure-activity relationships in a series of melatonin analogues with the low-density lipoprotein oxidation model. Free Radical Biol Med. 1999;26:1538–43.

    Article  CAS  Google Scholar 

  38. Cowan KH, Batist G, Tulpule A, Sinha BK, Myers CE. Similar biochemical changes associated with multidrug resistance in human breast cancer cells and carcinogen-induced resistance to xenobiotics in rats. Proc Natl Acad Sci. 1986;83:9328–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weschawalit S, Thongthip S, Phutrakool P, Asawanonda P. Glutathione and its antiaging and antimelanogenic effects. Clin Cosmet Investig Dermatol. 2017;10:147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hegde N, Hegde M, Shetty S, Kumari S. Evaluation of salivary total antioxidants, superoxide dismutase activity and glutathione levels in oral cancer patients. J Oral Maxillofac Surg Photon. 2013;116:150–5.

    Google Scholar 

  41. Jacob RA. The integrated antioxidant system Nutrition research. 1995;15:755–66.

    CAS  Google Scholar 

  42. Cieniecka-Rosłonkiewicz A, Pernak J, Kubis-Feder J, Ramani A, Robertson AJ, Seddon KR. Synthesis, anti-microbial activities and anti-electrostatic properties of phosphonium-based ionic liquids. Green Chem. 2005;7:855–62.

    Article  Google Scholar 

  43. Nam K-Y. In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles. The journal of advanced prosthodontics. 2011;3:20–4.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Borges A, Ferreira C, Saavedra MJ, Simoes M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist. 2013;19:256–65.

    Article  CAS  PubMed  Google Scholar 

  45. Jurica K, Gobin I, Kremer D, Čepo DV, Grubešić RJ, Karačonji IB, Kosalec I. Arbutin and its metabolite hydroquinone as the main factors in the antimicrobial effect of strawberry tree (Arbutus unedo L.) leaves. J Herb Med. 2017;8:17–23.

    Article  Google Scholar 

  46. Sullivan Å, Edlund C, Nord CE. Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis. 2001;1:101–14.

    Article  CAS  PubMed  Google Scholar 

  47. Khanal T, Kim HG, Hwang YP, Kong MJ, Kang MJ, Yeo HK, Kim DH, Jeong TC, Jeong HG. Role of metabolism by the human intestinal microflora in arbutin-induced cytotoxicity in HepG2 cell cultures. Biochem Biophys Res Commun. 2011;413:318–24.

    Article  CAS  PubMed  Google Scholar 

  48. Alsaiari M, Khan G, Khan MA, Liaqat S, Alkorbi AS, Irfan M, Rizk MA & Muhammad N. Evaluation of the effect of lignin on mechanical, water sorption, and antifungal properties of silicone based denture soft liners. Silicon. 2023.

  49. Guide L. 7: Office lighting–addendum. The Society of Light and Lighting (CIBSE), London. 2012.

  50. Matsunaga TO, Castrucci AMDL, Hadley ME, Hruby VJ. Melanin concentrating hormone (MCH): synthesis and bioactivity studies of MCH fragment analogues. Peptides. 1989;10:349–54.

    Article  CAS  PubMed  Google Scholar 

  51. Abraham A, Roga G. Topical steroid-damaged skin. Ind J Dermatol. 2014;59:456.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Earle MJ, Seddon KR. Ionic liquids. Green solvents for the future. Pure Appl Chem. 2000;72:1391–8.

    Article  CAS  Google Scholar 

  53. Gordon C, Muldoon M. (Frankfurt: Wiley Verlag) Synthesis and purification of ionic liquid. 2003.

  54. O’toole GA, Wathier M, Zegans ME, Shanks RM, Kowalski R & Grinstaff MW,. Diphosphonium ionic liquids as broad spectrum antimicrobial agents. Cornea. 2012;31:810.

    Article  PubMed  Google Scholar 

  55. Pongsuchart M, Danladkaew C, Khomvarn T, Sereemaspun A. in International Conference on Clean and Green Energy IPCBEE. 2012;27.

  56. Sanap AK, Shankarling GS. Environmentally benign synthesis of 4-aminoquinoline-2-ones using recyclable choline hydroxide. New J Chem. 2015;39:206–12.

    Article  CAS  Google Scholar 

  57. Wang L-H, Shu-Juan H. Studies on the voltammetric behavior of azo dyes and its determination in cosmetic products1. Russ J Electrochem. 2010;46:1414–8.

    Article  CAS  Google Scholar 

  58. Zeisel SH, Da Costa K-A. Choline: an essential nutrient for public health. Nutr Rev. 2009;67:615–23.

    Article  PubMed  Google Scholar 

  59. Zhou Y, Antonietti M. Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. J Am Chem Soc. 2003;125:14960–1.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number ISP22-22.

Author information

Authors and Affiliations

Authors

Contributions

F. B.: article write-up; N. M.: supervision; M. A. and M. U. N. A.: data analysis and critical review; A. S., A. Y. S., A. A., F. Y. S., and O. A. M.: resource and data analysis.

Corresponding author

Correspondence to Nawshad Muhammad.

Ethics declarations

Ethics Approval

Rats and ethical approval were obtained from the Postgraduate Medical Institute (PGMI), Lahore, on August 2021.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, F., Muhammad, N., Alshamrani, M. et al. Synthesis and Characterization of Cosmetic Grade Ionic Liquids and Their Application as Skin Whitening Agents. J Pharm Innov 18, 2277–2286 (2023). https://doi.org/10.1007/s12247-023-09790-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09790-x

Keywords

Navigation