Skip to main content
Log in

The effects of tranexamic acid on platelets in patients undergoing cardiac surgery: a systematic review and meta-analysis

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

This meta-analysis was designed to evaluate the effects of tranexamic acid (TXA) on platelets in patients undergoing cardiac surgery (CS). Relevant trials were identified by computerized searches of PUBMED, Cochrane Library, EMBASE, OVID, China National Knowledge Infrastructure (CNKI), Wanfang Data and VIP Data till Jun 4th, 2022, were searched using search terms “platelet”, “Tranexamic acid”, “cardiac surgery”, “randomized controlled trial” database search was updated on Jan 1st 2023. Primary outcomes included platelet counts, function and platelet membrane proteins. Secondary outcome included postoperative bleeding. Search yielded 49 eligible trials, which were finally included in the current study. As compared to Control, TXA did not influence post-operative platelet counts in adult patients undergoing on- or off-pump CS, but significantly increased post-operative platelet counts in pediatric patients undergoing on-pump CS [(WMD = 16.72; 95% CI 6.33 to 27.10; P = 0.002)], significantly increased post-operative platelet counts in adults valvular surgery [(WMD = 14.24; 95% CI 1.36 to 27.12; P = 0.03). Additionally, TXA improved ADP-stimulated platelet aggression [(WMD = 1.88; 95% CI 0.93 to 2.83; P = 0.0001)] and improved CD63 expression on platelets [(WMD = 0.72; 95% CI 0.29 to 1.15; P = 0.001)]. The current study demonstrated that TXA administration did not affect post-operative platelet counts in adult patients undergoing either on- or off-pump CABG, but significantly increased post-operative platelet counts in pediatric patients undergoing on-pump CS and adults valvular surgery. Furthermore, TXA improved ADP-stimulated platelet aggression and improved CD63 expression on platelets. To further confirm this, more well designed and adequately powered randomized trials are needed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sniecinski RM, Levy JH (2011) Bleeding and management of coagulopathy. J Thorac Cardiovasc Surg 142:662–667. https://doi.org/10.1016/j.jtcvs.2011.03.015

    Article  PubMed  Google Scholar 

  2. Dai Z, Chu H, Wang S, Liang Y (2018) The effect of tranexamic acid to reduce blood loss and transfusion on off-pump coronary artery bypass surgery: a systematic review and cumulative meta-analysis. J Clin Anesth 44:23–31. https://doi.org/10.1016/j.jclinane.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  3. Klein A, Agarwal S, Cholley B, Fassl J, Griffin M, Kaakinen T et al (2022) A review of European guidelines for patient blood management with a particular emphasis on antifibrinolytic drug administration for cardiac surgery. J Clin Anesth 78:110654. https://doi.org/10.1016/j.jclinane.2022.110654

    Article  CAS  PubMed  Google Scholar 

  4. Pasrija C, Ghoreishi M, Whitman G, Ad N, Alejo DE, Holmes SD et al (2019) Mitigating the risk: transfusion or reoperation for bleeding after cardiac surgery. Ann Thorac Surg 110:457–463. https://doi.org/10.1016/j.athoracsur.2019.10.076

    Article  PubMed  Google Scholar 

  5. Corredor C, Wasowicz M, Karkouti K, Sharma V (2015) The role of point-of-care platelet function testing in predicting postoperative bleeding following cardiac surgery: a systematic review and meta-analysis. Anaesthesia 70:715–731. https://doi.org/10.1111/anae.13083

    Article  CAS  PubMed  Google Scholar 

  6. Kestin AS, Valeri CR, Khuri SF, Loscalzo J, Ellis PA, MacGregor H et al (1993) The platelet function defect of cardiopulmonary bypass. Blood 82:107–117

    Article  CAS  PubMed  Google Scholar 

  7. Hamid M, Akhtar MI, Naqvi HI, Ahsan K (2017) Incidence and pattern of thrombocytopenia in cardiac surgery patients. Pak Med Assoc 67:1019–1023

    Google Scholar 

  8. Nazy I, Clare R, Staibano P, Warkentin TE, Larché M, Moore JC et al (2018) Cellular immune responses to platelet factor 4 and heparin complexes in patients with heparin-induced thrombocytopenia. J Thromb Haemost 16:1402–1412. https://doi.org/10.1111/jth.14132

    Article  CAS  PubMed  Google Scholar 

  9. Kumar PD (2007) Prevention and treatment of major blood loss. T N Engl J Med 357:1260–1261. https://doi.org/10.1111/jth.14132

    Article  CAS  Google Scholar 

  10. Faught C, Wells P, Fergusson D, Laupacis A (1998) Adverse effects of methods for minimizing perioperative allogeneic transfusion: a critical review of the literature. Transfus Med Rev 12:206–225. https://doi.org/10.1016/s0887-7963(98)80061-8

    Article  CAS  PubMed  Google Scholar 

  11. Weber CF, Görlinger K, Byhahn C, Moritz A, Hanke AA, Zacharowski K et al (2011) Tranexamic acid partially improves platelet function in patients treated with dual antiplatelet therapy. Eur J Anaesthesiol 28:57–62. https://doi.org/10.1159/000505714

    Article  PubMed  Google Scholar 

  12. Mezzano D, Panes O, Muñoz B, Pais E, Tagle R, González F et al (1999) Tranexamic acid inhibits fibrinolysis, shortens the bleeding time and improves platelet function in patients with chronic renal failure. Thromb Haemost 82:1250–1254

    Article  CAS  PubMed  Google Scholar 

  13. Mengistu AM, Röhm KD, Boldt J, Mayer J, Suttner SW, Piper SN (2008) The influence of aprotinin and tranexamic acid on platelet function and postoperative blood loss in cardiac surgery. Anesth Analg 107:391–397. https://doi.org/10.1213/ane.0b013e31817b7732

    Article  CAS  PubMed  Google Scholar 

  14. Amara U, Rittirsch D, Flierl M, Bruckner U, Klos A, Gebhard F (2008) Interaction between the coagulation and complement system. Adv Exp Med Biol 632:71–79. https://doi.org/10.1007/978-0-387-78952-1_6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mao Y, Jin J, Daniel JL, Kunapuli SP (2009) Regulation of plasmin-induced protease-activated receptor 4 activation in platelets. Platelets 20:191–198. https://doi.org/10.1080/09537100902803635

    Article  CAS  PubMed  Google Scholar 

  16. Blauhut B, Harringer W, Bettelheim P, Doran JE, Späth P, Lundsgaard-Hansen P (1994) Comparison of the effects of aprotinin and tranexamic acid on blood loss and related variables after cardiopulmonary bypass. J Thorac Cardiovasc Surg 108:1083–1091

    Article  CAS  PubMed  Google Scholar 

  17. Haley KM (2020) Platelet disorders. Pediatr Rev 41:224–235. https://doi.org/10.1542/pir.2018-0359

    Article  PubMed  Google Scholar 

  18. Lv H, Zhang Y, Zhao W, Lv HR, Zhou Y, Tian LJ, Shi J (2019) Effect of tranexamie acid on thromboxane B2 in patients receiving cardiac surgery with cardiopulmonarybypass. Natl Med J China 38:499–503. https://doi.org/10.3969/j.issn.1007-5062.2019.05.013

    Article  Google Scholar 

  19. Xie XX (2019) Application of two different doses of tranexamic acid in cardiac surgery with cardiopulmonary bypass. CDDB, pp 3–10

    Google Scholar 

  20. Zhang L, Wang Y (2018) Effect of tranexamic acid on coagulation function and postoperative bleeding in cardiac surgery under extracorporeal circulation. Modern J Integrated Tradit China Western Med 27:559–561. https://doi.org/10.3969/j.issn.1008-8849.2018.05.032

    Article  Google Scholar 

  21. Li HX (2018) Clinical observation of ulinastatin and tranexamic acid in cardiovascular anesthesia and extracorporeal circulation. J Clin Rational Drug Use 11:71–72

    Google Scholar 

  22. Xu GP, Li T (2018) Effect of tranexamic acid combined with ulinastatin on coagulation function in patients undergoing off-cardiopulmonary bypass grafting. China Med 13:1811–1814. https://doi.org/10.3760/j.issn.1673-4777.2018.12.012

    Article  Google Scholar 

  23. Li Y, Zhang S, Zhou Y, Qi Y, Guo JR (2017) Tranexamic acid combined with acute isovolumic hemodilution in off-cardiopulmonary bypass grafting. Clin Pharmacol Therap China 22:584–588

    Google Scholar 

  24. Wang JX (2017) Blood protective effect of tranexamic acid on patients undergoing off-cardiopulmonary bypass coronary artery transplantation. China Med Clin 17:1360–1362. https://doi.org/10.11655/zgywylc2017.09.047

    Article  MathSciNet  Google Scholar 

  25. Yang JM (2017) Application of tranexamic acid in open heart valve replacement. China J Modern Surg 07:117–120. https://doi.org/10.16260/j.cnki.1009-2188.2017.02.010

    Article  Google Scholar 

  26. Zhang ZB, Xi JF, Jiang ZX, Wei XQ (2016) Effects of tranexamic acid on blood loss, blood transfusion volume and complications in patients undergoing Sun’s surgery for acute Stanford Type A aortic dissection. J Clin Res 33:1249–1252. https://doi.org/10.3969/j.issn.1671-7171.2016.07.001

    Article  Google Scholar 

  27. Shou XM, Yu LL (2016) Blood protective effect of tranexamic acid on adult congenital heart disease surgery. China J Clin Thorac Cardiovasc Surg 23:1139–1141. https://doi.org/10.7507/1007-4848.20160268

    Article  Google Scholar 

  28. Liu YQ, Bao WJ, Jiang YN, Jiang YL (2015) Protective effect of tranexamic acid and ulinastatin on coagulation function in children with tetralogy of Fallot after cardiopulmonary bypass surgery. Shandong Med J 55:48–49. https://doi.org/10.3969/j.issn.1002-266X.2015.39.019

    Article  CAS  Google Scholar 

  29. Guo T, Han Z, Xin YT (2015) Effect of tranexamic acid on off -pump coronary artery bypass grafting. J Aerospace Med 26:678–680. https://doi.org/10.3969/j.issn.2095-1434.2015.06.009

    Article  Google Scholar 

  30. Zhang Y, Zhang WL, Mu CF (2014) Protective effect of tranexamic acid combined with ulinastatin on blood in patients undergoing cardiac valve replacement. J Hainan Medical College 20:1217–1222. https://doi.org/10.13210/j.cnki.jhmu.20140522.017

    Article  CAS  Google Scholar 

  31. Qi J, Dai SB (2013) Blood-saving effect of different doses of tranexamic acid in patients undergoing cardiac valve replacement cardiopulmonary bypass. China J Anesthesiol 33:1195–1197. https://doi.org/10.3760/cma.j.issn.0254-1416.2013.10.010

    Article  CAS  Google Scholar 

  32. Zhao P, Yang C, Wen DG, Meng CY, Luo B (2012) Clinical observation of tranexamic acid in reducing bleeding after extracorporeal circulation. J Clin Surg 20:495–497. https://doi.org/10.3969/j.issn.1005-6483.2012.07.021

    Article  Google Scholar 

  33. Wang G, Xie G, Jiang T, Wang Y, Wang W, Ji H et al (2012) Tranexamic acid reduces blood loss after off-pump coronary surgery: a prospective, randomized, double-blind, placebo-controlled study. Anesth Analg 115:239–243. https://doi.org/10.1213/ANE.0b013e3182264a11

    Article  CAS  PubMed  Google Scholar 

  34. Pan X, Tang CZ, Sun WT, Xie SB, Li H, Zhao Z et al (2012) Application of tranexamic acid in cardiac valve replacement surgery. Beijing Medical 34:580–581

    Google Scholar 

  35. Tu J, Zhang BD, Lv J, Liang DK (2011) Blood conservative effects of tranexamic acid on children with cyanotic congenital heart disease. J Appl Clin Pediatr 26:1793–1795. https://doi.org/10.3969/j.issn.1003-515X.2011.23.011

    Article  CAS  Google Scholar 

  36. Xiao JB, Wang WB, Zhou X, Wang SB, Fang C (2011) Application of tranexamic acid in anesthesia for open heart surgery under cardiopulmonary bypass. Anhui Medical Pharm J 15:615–617. https://doi.org/10.3969/j.issn.1009-6469.2011.05.040

    Article  Google Scholar 

  37. Liao F, XiaHou GL, Zhong LL (2011) Effect of tranexamic acid on blood loss during cardiopulmonary bypass heart valve replacement. China Medical Guide 09:229–230. https://doi.org/10.3969/j.issn.1671-8194.2011.26.175

    Article  CAS  ADS  Google Scholar 

  38. Zhang Y, Song JP, Chen ZQ, Zhang H, Zhao Y, Ye S et al (2010) The optimal application time of tranexamic acid in the cardiac valve replacement with cardiopulmonary bypass to reduce postoperative bleeding. Acta Universitatis Medicinalis Aanjing (Nat Sci) 30:1448–1051

  39. Zhang SJ, Zhu DM, Shen J, Wang W (2010) The effects of tranexamic acid in pediatric extracorporeal circulation. China J ECC 08:166–168. https://doi.org/10.3969/j.issn.1672-1403.2010.03.011

    Article  Google Scholar 

  40. Wang LH, Zhou SJ, Wang X (2010) Effect of tranexamic acid on postoperative hemostasis and inflammatory mediators in infants with congenital heart disease: a randomized controlled trial. China J Evid Pediatr 06:420–424. https://doi.org/10.3969/j.issn.1008-6358.2010.01.043

    Article  Google Scholar 

  41. Cai LR, Zeng JH (2010) Protective effect of tranexamic acid on blood during extracorporeal circulation. China J Pract Surg 30:8–9

    Google Scholar 

  42. Liu YM, Miu YQ, Qu YZ (2008) Application of tranexamic acid in cardiopulmonary bypass heart valve replacement during perioperative period. Ningxia Med J 30:546–547. https://doi.org/10.3969/j.issn.1001-5949.2008.06.032

    Article  Google Scholar 

  43. Liu XG, Jin XG, Fang GA, Liu B, Zhuang XL, Fang HB (2006) Protective effect of tranexamic acid on platelets in cardiopulmonary bypass. China J Clin Pharm 15:85–86. https://doi.org/10.3969/j.issn.1007-4406.2006.02.006

    Article  Google Scholar 

  44. Wei M, Jian K, Guo Z, Wang L, Jiang D, Zhang LT et al (2006) Tranexamic acid reduces postoperative bleeding in off-pump coronary artery bypass grafting. Scand Cardiovasc J 40:105–109. https://doi.org/10.1080/1401743050051986

    Article  CAS  PubMed  Google Scholar 

  45. Yue J, Yang J, Deng SZ (2005) Comparative study on the effect of tranexamic acid and aprotinin on guanosine monophosphate 140 during cardiopulmonary bypass in children. China J Prim Med Pharm 12:1317–1319. https://doi.org/10.3760/cma.j.issn.1008-6706.2005.10.011

    Article  Google Scholar 

  46. Wu T, Weng QX (2005) Effect of ulinastatin plus tranexamic acid and aprotinin on extracorporeal circulation. Tianjin Medical J 33:767–769. https://doi.org/10.3969/j.issn.0253-9896.2005.12.009

    Article  CAS  Google Scholar 

  47. Jin XG (2005) Protective effect of tranexamic acid on platelets in cardiopulmonary bypass. China J Clin Pharm 15:993–995. https://doi.org/10.3321/j.issn:1001-2494.2005.13.013

    Article  ADS  Google Scholar 

  48. Ma SF, Qiao J, Ren XY, Wang XG (1999) Application of hemicyclic acid in cardiopulmonary bypass heart valve replacement. China Clin J Thorac Cardiovasc Surg 06:1–5. https://doi.org/10.3969/j.issn.1007-4848.1999.03.010

    Article  CAS  Google Scholar 

  49. Ma SF, Qiao J, Zhang LS (1998) Protective effect of hemostatic cyclic acid on platelets during extracorporeal circulation. China Clin J Thorac Cardiovasc Surg 14:99–100. https://doi.org/10.3760/cma.j.issn.1001-4497.1998.02.014

    Article  Google Scholar 

  50. Zhang XN, Weng QY, Yang XX (1997) Aprotinin versus tranexamic acid on postoperative bleeding in patients undergoing direct vision cardiac surgery. China Circ 12:88–90. https://doi.org/10.3321/j.issn:1000-3614.1997.02.006

    Article  Google Scholar 

  51. Van Aelbrouck C, Jorquera-Vasquez S, Beukinga I, Pradier O, Ickx B, Barvais L et al (2016) Tranexamic acid decreases the magnitude of platelet dysfunction in aspirin-free patients undergoing cardiac surgery with cardiopulmonary bypass: a pilot study. Blood Coagul Fibrinolysis 27:855–861. https://doi.org/10.1097/mbc.0000000000000485

    Article  PubMed  Google Scholar 

  52. Mansouri M, Attary M, Bagheri K, Massoumi G, Ghavami B (2012) Comparative evaluation of the effects of tranexamic acid and low-dose aprotinin on post-valvular heart surgery bleeding and allogenic transfusion. Interact Cardiovasc Thorac Surg 15:23–27. https://doi.org/10.1093/icvts/ivs114

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ahn SW, Shim JK, Youn YN, Song JW, Yang SY, Chung SC et al (2012) Effect of tranexamic acid on transfusion requirement in dual antiplatelet-treated anemic patients undergoing off-pump coronary artery bypass graft surgery. Circ J 76:96–101. https://doi.org/10.1253/circj.cj-11-0811

    Article  CAS  PubMed  Google Scholar 

  54. Aggarwal V, Kapoor PM, Choudhury M, Kiran U, Chowdhury U (2012) Utility of Sonoclot analysis and tranexamic acid in tetralogy of Fallot patients undergoing intracardiac repair. Ann Card Anaesth 15:26–31. https://doi.org/10.4103/0971-9784.91477

    Article  PubMed  Google Scholar 

  55. Bulutcu FS, Ozbek U, Polat B, Yalçin Y, Karaci AR, Bayindir O (2005) Which may be effective to reduce blood loss after cardiac operations in cyanotic children: tranexamic acid, aprotinin or a combination? Paediatr Anaesth 15:41–46. https://doi.org/10.1111/j.1460-9592.2004.01366

    Article  PubMed  Google Scholar 

  56. Andreasen JJ, Nielsen C (2004) Prophylactic tranexamic acid in elective, primary coronary artery bypass surgery using cardiopulmonary bypass. Eur J Cardiothorac Surg 26:311–317. https://doi.org/10.1016/j.ejcts.2004.03.012

    Article  PubMed  Google Scholar 

  57. Pleym H, Stenseth R, Wahba A, Bjella L, Karevold A, Dale O (2003) Single-dose tranexamic acid reduces postoperative bleeding after coronary surgery in patients treated with aspirin until surgery. Anesth Analg 96:923–928. https://doi.org/10.1213/01.ane.0000054001.37346.03

    Article  CAS  PubMed  Google Scholar 

  58. Chauhan S, Bisoi A, Modi R, Gharde P, Rajesh MR (2003) Tranexamic acid in paediatric cardiac surgery. Indian J Med Res 118:86–89

    CAS  PubMed  Google Scholar 

  59. Zabeeda D, Medalion B, Sverdlov M, Ezra S, Schachner A, Ezri T et al (2002) Tranexamic acid reduces bleeding and the need for blood transfusion in primary myocardial revascularization. Ann Thorac Surg 74:733–738. https://doi.org/10.1016/s0003-4975(02)03784-0

    Article  PubMed  Google Scholar 

  60. Levin E, Wu J, Devine DV, Alexander J, Reichart C, Sett S et al (2000) Hemostatic parameters and platelet activation marker expression in cyanotic and acyanotic pediatric patients undergoing cardiac surgery in the presence of tranexamic acid. Thromb Haemost 83:54–59

    Article  CAS  PubMed  Google Scholar 

  61. Misfeld M, Dubbert S, Eleftheriadis S, Siemens HJ, Wagner T, Sievers HH (1998) Fibrinolysis-adjusted perioperative low-dose aprotinin reduces blood loss in bypass operations. Ann Thorac Surg 66:792–799. https://doi.org/10.1016/s0003-4975(98)00646-8

    Article  CAS  PubMed  Google Scholar 

  62. Zonis Z, Seear M, Reichert C, Sett S, Allen C (1996) The effect of preoperative tranexamic acid on blood loss after cardiac operations in children. J Thorac Cardiovasc Surg 11:982–987. https://doi.org/10.1016/s0022-5223(96)70374-4

    Article  Google Scholar 

  63. Shore-Lesserson L, Reich DL, Vela-Cantos F, Ammar T, Ergin MA (1996) Tranexamic acid reduces transfusions and mediastinal drainage in repeat cardiac surgery. Anesth Analg 83:18–26. https://doi.org/10.1097/00000539-199607000-00005

    Article  CAS  PubMed  Google Scholar 

  64. Katsaros D, Petricevic M, Snow NJ, Woodhall DD, Van Bergen R (1996) Tranexamic acid reduces post bypass blood use: a double-blinded, prospective, randomized study of 210 patients. Ann Thorac Surg 61:1131–1135. https://doi.org/10.1016/0003-4975(96)00022-7

    Article  CAS  PubMed  Google Scholar 

  65. Yau TM, Carson S, Weisel RD, Ivanov J, Sun Z, Yu R et al (1992) The effect of warm heart surgery on postoperative bleeding. Thorac Cardiovasc Surg 103:1155–1162

    Article  CAS  Google Scholar 

  66. Wahba A, Rothe G, Lodes H, Barlage S, Schmitz G, Birnbaum DE (2000) Effects of extracorporeal circulation and heparin on the phenotype of platelet surface antigens following heart surgery. Thromb Res 97:379–386. https://doi.org/10.1016/s0049-3848(99)00181-4

    Article  CAS  PubMed  Google Scholar 

  67. Velik-Salchner C, Maier S, Innerhofer P, Kolbitsch C, Streif W, Mittermayr M et al (2009) An assessment of cardiopulmonary bypass-induced changes in platelet function using whole blood and classical light transmission aggregometry: the results of a pilot study. Anesth Analg 108:1747–1754. https://doi.org/10.1213/ane.0b013e3181a198ac

    Article  PubMed  Google Scholar 

  68. Koning NJ, Atasever B, Vonk AB, Boer C (2014) Changes in microcirculatory perfusion and oxygenation during cardiac surgery with or without cardiopulmonary bypass. J Cardiothorac Vasc Anesth 28:1331–1340. https://doi.org/10.1053/j.jvca.2013.04.009

    Article  PubMed  Google Scholar 

  69. Van Poucke S, Stevens K, Kicken C, Simons A, Marcus A, Lancé M (2016) Platelet function during hypothermia in experimental mock circulation. Artif Organs 40:288–293. https://doi.org/10.1111/aor.12555

    Article  CAS  PubMed  Google Scholar 

  70. Boldt J, Zickmann B, Benson M, Dapper F, Hempelmann G, Schindler E (1993) Does platelet size correlate with function in patients undergoing cardiac surgery? Intensive Care Med 19:44–47. https://doi.org/10.1007/bf01709277

    Article  CAS  PubMed  Google Scholar 

  71. Longstaff C, Kolev K (2015) Basic mechanisms and regulation of fibrinolysis. J Thromb Haemost 13(Suppl 1):S98-105. https://doi.org/10.1111/jth.12935

    Article  CAS  PubMed  Google Scholar 

  72. Medcalf RL (2007) Fibrinolysis, inflammation, and regulation of the plasminogen activating system. J Thromb Haemost 5(Suppl 1):132–142. https://doi.org/10.1111/j.1538-7836.2007.02464

    Article  CAS  PubMed  Google Scholar 

  73. Syrovets T, Simmet T (2004) Novel aspects and new roles for the serine protease plasmin. Cell Mol Life Sci 61:873–885. https://doi.org/10.1007/s00018-003-3348-5

    Article  CAS  PubMed  Google Scholar 

  74. Fitch JC, Rollins S, Matis L, Alford B, Aranki S, Collard CD et al (1999) Pharmacology and biological efficacy of a recombinant, humanized, single-chain antibody C5 complement inhibitor in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass. Circulation 100:2499–2506. https://doi.org/10.1161/01.cir.100.25.2499

    Article  CAS  PubMed  Google Scholar 

  75. Haan J, van Oeveren W (1998) Platelets and soluble fibrin promote plasminogen activation causing downregulation of platelet glycoprotein Ib/IX complexes: protection by aprotinin. Thromb Res 92:171–179. https://doi.org/10.1016/s0049-3848(98)00130-3

    Article  PubMed  Google Scholar 

  76. Collen D, Lijnen HR (1991) Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 78:3114–3124

    Article  CAS  PubMed  Google Scholar 

  77. Levy JH (2010) Antifibrinolytic therapy: new data and new concepts. Lancet 376:3–4. https://doi.org/10.1016/s0140-6736(10)60939-7

    Article  PubMed  Google Scholar 

  78. Ishii-Watabe A, Uchida E, Mizuguchi H, Hayakawa T (2000) On the mechanism of plasmin-induced platelet aggregation. Implications of the dual role of granule ADP. Biochem Pharmacol 59:1345–1355. https://doi.org/10.1016/s0006-2952(00)00279-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Chun-mei Xie and Dr. Ling Li for their linguistic suggestions.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Y-tY: Conceptualization, Methodology, Data curation, Validation. L-xH: Data curation, Methodology. Z-zY: Data curation, Software, Writing—original draft.

Corresponding author

Correspondence to Yun-tai Yao.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Data availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Flowchart of the included studies

11239_2023_2905_MOESM2_ESM.pdf

Risk- of- bias graph for each included study. Green (+), red (−), and yellow(?) circles indicate low, high, and unclear risk of bias, respectively

11239_2023_2905_MOESM3_ESM.pdf

Risk- of- bias summary for each included study. Green (+), red (−), and yellow(?) circles indicate low, high, and unclear risk of bias, respectively

Effects on post-operative bleeding

Supplementary file5 (DOC 33 kb)

Supplementary file6 (DOCX 16 kb)

Supplementary file7 (DOCX 14 kb)

Supplementary file8 (DOCX 17 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Zy., He, Lx., Yao, Yt. et al. The effects of tranexamic acid on platelets in patients undergoing cardiac surgery: a systematic review and meta-analysis. J Thromb Thrombolysis 57, 235–247 (2024). https://doi.org/10.1007/s11239-023-02905-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-023-02905-8

Keywords

Navigation