Skip to main content
Log in

Neuregulin-1 suppresses anti-apoptotic effect of Der p 38 on neutrophils by inhibition of cytokine secretion

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Background

Neuregulin (NRG) plays essential roles in the growth and differentiation of epithelial, neuronal and glial cells. Asthma is a chronic respiratory disease characterized by airway constriction and caused by allergens such as Der p 38.

Objective

This study is aimed to investigate the relationship between NRG-1 and asthma-like inflammation due to allergens.

Results

Following Der p 38 intranasal or intraperitoneal/intranasal (IP/IN) administration in mice, the expression levels of NRG-1 and its receptors increased in response, including ErbB2 and ErbB4. We further examined the roles of NRG-1 in the human BEAS-2B lung epithelial cell line. Der p 38 enhanced NRG-1 expression in the cells and NRG-1 secretion was also upregulated in BEAS-2B cell supernatants treated with Der p 38. NRG-1 alone did not increase the release of interleukin-6 (IL-6), IL-8, or monocyte chemoattractant protein-1 (MCP-1), but it inhibited cytokine secretion increased by Der p 38. Direct treatment with NRG-1 did not affect alteration of neutrophil apoptosis due to Der p 38, but BEAS-2B cell supernatants treated with Der p 38 and NRG-1 blocked the antiapoptotic effects of Der p 38-treated supernatants on neutrophils by activation of caspase 9 and caspase 3.

Conclusion

NRG-1 may exhibit anti-inflammatory effects in a Der p 38-induced allergenic environment, particularly neutrophilic inflammation. The present study on NRG may open up approach opportunities for understanding of pathogenesis and treatment of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All datasets generated for this study are included in the manuscript.

References

  • Blüher M (2019) Neuregulin 4: A “Hotline” between brown fat and liver. Obesity (silver Spring) 27:1555–1557

    Article  PubMed  Google Scholar 

  • Chung KF, Barnes PJ (1999) Cytokines in asthma. Thorax 54:825–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falls DL (2003) Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 284:14–30

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Cuesta L, Thomas RK (2015) Molecular pathways: targeting NRG1 fusions in lung cancer. Clin Cancer Res 21:1989–1994

    Article  CAS  PubMed  Google Scholar 

  • Gambarotta G, Fregnan F, Gnavi S, Perroteau I (2013) Neuregulin 1 role in schwann cell regulation and potential applications to promote peripheral nerve regeneration. Int Rev Neurobiol 108:223–256

    Article  CAS  PubMed  Google Scholar 

  • Geissler A, Ryzhov S, Sawyer DB (2020) Neuregulins: protective and reparative growth factors in multiple forms of cardiovascular disease. Clin Sci (lond) 134:2623–2643

    Article  CAS  PubMed  Google Scholar 

  • Ho J, Moyes DL, Tavassoli M, Naglik JR (2017) The role of ErbB receptors in infection. Trends Microbiol 25:942–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holgate ST (2012) Innate and adaptive immune responses in asthma. Nat Med 18:673–683

    Article  CAS  PubMed  Google Scholar 

  • Hong MH, Kashif A, Kim G, Park BS, Lee NR, Yang EJ et al (2021) Der p 38 is a bidirectional regulator of eosinophils and neutrophils in allergy. J Immunol 207:1735–1746

    Article  CAS  PubMed  Google Scholar 

  • Jeon H, Kim G, Kashif A, Hong MH, Lee JS, Hong Y et al (2021) Pathogenic mechanism of Der p 38 as a novel allergen homologous to RipA and RipB proteins in atopic dermatitis. Front Immunol 12:646316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang W, Cheng Y, Zhou F, Wang L, Zhong L, Li HT et al (2019) Neuregulin-1 protects cardiac function in septic rats through multiple targets based on endothelial cells. Int J Mol Med 44:1255–1266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang W, Cheng Y, Wang X, Zhou F, Zhou C, Wang L et al (2020) Neuregulin-1: An underlying protective force of cardiac dysfunction in sepsis (Review). Mol Med Rep 21:2311–2320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kataria H, Alizadeh A, Karimi-Abdolrezaee S (2019) Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 180:101643

    Article  CAS  PubMed  Google Scholar 

  • Kettle R, Simmons J, Schindler F, Jones P, Dicker T, Dubois G et al (2010) Regulation of neuregulin 1beta1-induced MUC5AC and MUC5B expression in human airway epithelium. Am J Respir Cell Mol Biol 42:472–481

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Gu A, Lee JS, Yang EJ, Kashif A, Hong MH et al (2020) Suppressive effects of S100A8 and S100A9 on neutrophil apoptosis by cytokine release of human bronchial epithelial cells in asthma. Int J Med Sci 17:498–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim G, Hong MH, Kashif A, Hong Y, Park BS, Mun JY et al (2021) Der f 38 is a novel TLR4-binding allergen related to allergy pathogenesis from Dermatophagoides farinae. Int J Mol Sci 22:8440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CD, Choi WS, Choi YG, Kang HS, Lee WT, Kim HJ et al (2020) Inhibition of phosphodiesterase suppresses allergic lung inflammation by regulating MCP-1 in an OVA-induced asthma murine model with co-exposure to lipopolysaccharide. J Int Med Res 48:300060520903663

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Lein PJ, Ford GD, Liu C, Stovall KC, White TE et al (2015) Neuregulin-1 inhibits neuroinflammatory responses in a rat model of organophosphate-nerve agent-induced delayed neuronal injury. J Neuroinflammation 12:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Namba H, Okubo T, Nawa H (2016) Perinatal exposure to neuregulin-1 results in disinhibition of adult midbrain dopaminergic neurons: Implication in schizophrenia modeling. Sci Rep 6:22606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou GY, Lin WW, Zhao WJ (2021) Neuregulins in neurodegenerative diseases. Front Aging Neurosci 13:662474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsahai JM, Hansbro PM, Wark PAB (2019) Mechanisms and management of asthma exacerbations. Am J Respir Crit Care Med 199:423–432

    Article  CAS  PubMed  Google Scholar 

  • Rawlings SA, Heldt S, Prattes J, Eigl S, Jenks JD, Flick H et al (2019) Using interleukin 6 and 8 in blood and bronchoalveolar lavage fluid to predict survival in hematological malignancy patients with suspected pulmonary mold infection. Front Immunol 10:1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons LJ, Surles-Zeigler MC, Li Y, Ford GD, Newman GD, Ford BD (2016) Regulation of inflammatory responses by neuregulin-1 in brain ischemia and microglial cells in vitro involves the NF-kapa B pathway. J Neuroinflammation 13:237

    Article  PubMed  PubMed Central  Google Scholar 

  • Sze E, Bhalla A, Nair P (2020) Mechanisms and therapeutic strategies for non-T2 asthma. Allergy 75:311–325

    Article  PubMed  Google Scholar 

  • Varricchi G, Modestino L, Poto R, Cristinziano L, Gentile L, Postiglione L et al (2022) Neutrophil extracellular traps and neutrophil-derived mediators as possible biomarkers in bronchial asthma. Clin Exp Med 22:285–300

    Article  CAS  PubMed  Google Scholar 

  • Virllon A, Mouton-Liger F, Martinet M, Cognat E, Hourregue C, Dumurgier J et al (2022) Plasma neuregulin 1 as a synaptic biomarker in Alzheimer’s disease: a discovery cohort study. Alzheimers Res Ther 14:71

    Article  Google Scholar 

  • Yamasaki A, Okazaki R, Harada T (2022) Neutrophils and asthma. Diagnostics (basel) 12:1175

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Li Y, Lyu Z, Huang K, Corrigan CJ, Ying S et al (2017) Characteristics of proinflammatory cytokines and chemokines in airways of asthmatics: Relationships with disease severity and infiltration of inflammatory cells. Chin Med J (engl) 130:2033–2040

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhu Z, Zuo X, Pan H, Gu Y, Yuan Y et al (2020) The role of NTHi colonization and infection in the pathogenesis of neutrophilic asthma. Respir Res 21:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao WJ, Ou GY, Lin WW (2021) Integrative analysis of neuregulin family members-related tumor microenvironment for predicting the prognosis in gliomas. Front Immunol 12:682415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1F1A1075097).

Author information

Authors and Affiliations

Authors

Contributions

YH and JHC performed experiments, data collection, and data analysis. MHH, GK, JSL, and RSW, MSY analyzed the data and conducted statistical analysis. EJY, and ISK designed the study and wrote the manuscript.

Corresponding authors

Correspondence to Eun Ju Yang or In Sik Kim.

Ethics declarations

Conflicts of interest

Yujin Hong, Ji Hyeon Choi, Min Hwa Hong, Geunyeong Kim, Ji-Sook Lee, Ran-Sook Woo, Eun Ju Yang, and In Sik Kim declare that they have no competing interests.

Consent

All participants in this study gave their written informed consent.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 544 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Choi, J.H., Hong, M.H. et al. Neuregulin-1 suppresses anti-apoptotic effect of Der p 38 on neutrophils by inhibition of cytokine secretion. Mol. Cell. Toxicol. 19, 857–867 (2023). https://doi.org/10.1007/s13273-023-00375-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-023-00375-w

Keywords

Navigation