Skip to main content
Log in

Lydites in the North Onega Synclinorium, Karelia: Trace Element Composition and Possible Genesis

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

We studied the geochemistry of Paleoproterozoic siliceous rocks (lydites) from the North Onega synclinorium (Karelia). The study objects are represented by 16 lydite samples taken from one stratigraphic level in the geological sections of two sites–Tetyugino and Shunga. Their structural characteristics and mineral composition were studied using a scanning electron microscope equipped with an energy-dispersion microanalyzer. The trace element composition was determined by the inductively coupled plasma mass spectrometry (ICP-MS). The contents of most trace elements are below the Clarke concentrations. The Tetyugino lydites contain mainly biophile elements (P, Co, Cu, Mo, V, Ba), while the Shunga lydites are dominated by lithophile elements (Li, Rb, Cs). The trace element composition of lydites indicates that their formation took place on the periphery of the hydrothermal system, whereas the Tetyugino site was closer to the hydrothermal discharge zone than the Shunga site. The chemical peculiarities of the lydites allow us to consider them as a raw material for very pure quartz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Accurate age of the Zaonega Formation was not established, but it was constrained between the end of the Lomagundi–Jatuli event in the Fennoscandian Shield (~2060 Ma ago) and ejection of volcanic rocks of the Suisarian Formation (Ludicovian Suprahorizon) about 1980 Ma ago (Puchtel et al., 1999; Melezhik et al., 2013). Age values reported in literature confirm the indicated time interval. The Pb‒Pb age of dolomites of the underlying Tulomozero Formation seemed to be 2090 ± 70 Ma (Ovchinnikova et al., 2007). The organic matter from metamorphosed oil shales of the Zaonega Formation is dated by the Re-Os method at about 2050 Ma (Hannah et al., 2008). In addition, mafic dikes cutting rocks of the Zaonega Formation define the ages of 1919 ± 18 Ma (Priyatkina et al., 2014), 1956 ± 5 Ma (Stepanova et al., 2014), and 1961.6 ± 5.1 Ma (Martin et al., 2015). Dolerite sills in the overlying Suisarian Formation are dated at 1969 ± 18 Ma (Puchtel et al., 1998) and 1988 ± 34 Ma (Puchtel et al., 1999).

  2. Lydites and lydite-type rocks are present as thin (up to 1 m thick) interlayers in the Ludicovian sequences in southwestern Karelia (northern coasts of lakes Suojarvi and Small Janisjarvi), as well as in northwestern Karelia (Pana–Kuolajarvi structure) (Geologiya…, 1982). In the early 2000s, hole R-2500 (2516 m deep) was drilled at the Outokumpu site (eastern Finland) (Outokumpu Deep Drilling Project, 2011). Siliceous rocks with 73.02% SiO2 were found as a single layer, the thickness of which was not determined accurately due to poor core recovery. The silica content in some samples from the Outokumpu section, which are similar to phtanites described by us, reaches 92.93% (Kontinen et al., 2006). Based on geochemical characteristics and geophysical parameters, the Outocumpu complex is supposedly correlated with the Zaonega Formation, while rocks within an interval of 1431–1446 m is correlated with the shungite–lydite–dolomite complex in the North Onega synclinorium.

  3. The U‒Pb (ID-TIMS) isotopic dating of baddeleyite extracted from dolerites yielded (207Pb/206Pb) age of 1999.9 ± 4.0 Ma (Stepanova et al., 2022).

REFERENCES

  1. Atlas tekstur i struktur shungitonosnykh porod Onezhskogo sinklinoriya (Atlas of Structures and Textures of the Shungite-Bearing Rocks in the Onega Synclinorium), Filippov, M.M. and Melezhik, V.A., Eds., Petrozavodsk: Karel. Nauch. Tsentr RAN, 2006.

    Google Scholar 

  2. Beus, A.A. and Grigoryan, S.V., Geokhimicheskie metody poiskov i razvedki mestorozhdenii tverdykh poleznykh iskopaemykh (Geochemical Methods for the Prospecting and Exploration Of Solid Mineral deposits), Moscow: Nedra, 1975. 280 s.

  3. Buseck, P.R., Galdobina, L.P., Kovalevski, V.V., Roshkova, N.N., et al., Shungites: the C-rich rocks of Karelia, Russia, Can. Mineral., 1997, vol. 35, pp. 1363–1378.

    Google Scholar 

  4. Calvert, S.E. and Pedersen, T.F., Elemental proxies for Palaeoclimatic and Palaeoceanographic variability in marine sediments: Interpretation and application, in Paleoceanography of the Late Cenozoic. Part 1. Methods, Hillaire-Marcel, C. and de Vernal, A. Eds., New York: Elsevier, 2007, 567‒644. https://doi.org/10.1016/S1572-5480(07)01019-6

    Book  Google Scholar 

  5. Črne, A.E., Melezhik, V.A., Prave, A.R., et al., Zaonega Formation: FAR-DEEP Holes 12A and 12B, and neighbouring quarries, Melezhik, V.A., Fallick, A.E., Kump, L.R., Lepland, A., Prave, A.R., and Strauss, H., Eds., in Reading the Archive of Earth’s Oxygenation, vol. 2, Heidelberg: Springer, 2013a, pp. 946–1007. https://doi.org/10.1007/978-3-642-29659-8_4

  6. Črne, A.E., Melezhik, V.A., Prave, A.R., et al., Zaonega formation: FAR-DEEP Hole 13A, Melezhik, V.A., Fallick, A.E., Kump, L.R., Lepland, A., Prave, A.R., and Strauss, H., Eds., in Reading the Archive of Earth’s Oxygenation, vol. 2, Heidelberg: Springer, 2013b, pp. 1008–1046. https://doi.org/10.1007/978-3-642-29659-8_4

  7. Filippov, M.M., Shungitonosnye porody Onezhskoi struktury (The Shungite-Bearing Rocks in the Onega Structure), Petrozavodsk: KarNTs RAN, 2002.

  8. Filippov, M.M. and Deines Yu.E. Subplastovyi tip mestorozhdenii shungitov Karelii (Substratiform Type of Shungite Deposits in Karelia), Petrozavodsk: KarNTs RAN, 2018.

  9. Filippov, M.M., Medvedev, P.V., and Romashkin, A.E., The origin of shungitic rocks in southern Karelia, Lith. Miner. Resour., 1998, no. 3, pp.. 285–294.

  10. Gablina, I.F., Dobretsova, I.G., Popova, E.A., et al., Mineral composition and geochemical zoning of bottom sediments in the Pobeda hydrothermal cluster (17°07.45′ N–17°08.7′ N Mid-Atlantic Ridge), Lith. Miner. Resour., 2021, no. 2, pp. 113–131.

  11. Galdobina, L.P., Shidlovski, M., Sokolov, V.A., et al., Study of Lower Proterozoic shungites in Karelia by the carbon isotope method, in 27 Int. Geol. Congr. Abstracts of Papers, vol. 2, Moscow, 1984, p. 292.

  12. Ge, L., Jiang, S.-Y., Swennen, R., et al., Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry, Mar. Geol., 2010, vol. 277, pp. 21–30.

    Article  Google Scholar 

  13. Geologicheskii slovar (Geological Glossary), Paffengol’ts, K.N., Ed., Moscow: Nedra, 1978.

  14. Geologicheskii slovar (Geological Glossary), Petrov, O.V., Ed., St. Petersb.: VSEGEI, 2011, vol. 2.

    Google Scholar 

  15. Geologicheskii slovar (Geological Glossary), Petrov, O.V., Ed., St. Petersb.: VSEGEI, 2012, vol. 3.

    Google Scholar 

  16. Geologiya shungitonosnykh vulkanogenno-osadochnykh obrazovanii proterozoya Karelii (Geology of Proterozoic Shungite-Bearing Volcanosedimentary Rocks in Karelia), Petrozavodsk: Kareliya, 1982.

  17. Gordeev, V.V., Geokhimiya sistemy reka-more (Geochemistry of the River–Sea System), Moscow: Matushkina I.I., 2012.

    Google Scholar 

  18. Gordeev, V.V. and Lisitsyn, A.P., The geochemical interaction between the fresh-water and marine hydrospheresGeokhimicheskoe, Geol. Geofiz., 2014, vol. 55, no. 5–6, pp. 721–744.

    Google Scholar 

  19. Gorlov, V.I., The Onega shungites (geology, genesis, and prognostic assessment), PhD (Geol.-Miner.) Dissertation, Petrozavodsk, 1984.

  20. Grigor’ev, N.A., Raspredelenie khimicheskikh elementov v verkhnei chasti kontinental’noi kory (Distribution of Chemical Elements in the Upper Part of the Continental Crust), Yekaterinburg: UrO RAN, 2009.

  21. Gromet, P., Dymek, R., Hoskin, L., and Krotev, R., The North American Shale Composite. Its compilation, major and trace element characteristics, Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 2469–2482.

    Article  Google Scholar 

  22. Gurskii, Yu.N., Peculiarities of the chemical composition of silt waters in the White Sea, Oceanology, 2005, vol. 45(2), pp. 224–239.

    Google Scholar 

  23. Johannessen, K.C., Vander, RoostJ., Dahle, H., et al., Environmental controls on biomineralization and Fe-mound formation in a low-temperature hydrothermal system at the Jan Mayen vent fields, Geochim. Cosmochim. Acta, 2017, vol. 202, pp. 101–123. https://doi.org/10.1016/j.gca.2016.12.016

    Article  Google Scholar 

  24. Joosu, L., Lepland, A., Kirsimae, K., et al., The REE-composition and petrography of apatite in 2 Ga Zaonega Formation, Russia: The environmental setting for phosphogenesis, Chem. Geol., vol. 2015, pp. 88–107. https://doi.org/10.1016/j.chemgeo.2014.11.013

  25. Kambalina, M.G., Determination of general concentration and occurrence forms of silica in natural waters by the AAS method with the electrothermal atomization and spectrothermy, Extended Abstract, PhD (Chem.) Dissertation, Tomsk, 2015.

  26. Kholodov, V.N., and Nedumov, R.I., Geochemical correlations of the manifestation of hydrosulfuric contamination in ancient basin waters, Izv. AN SSSR,Ser. Geol., 1991, no. 12, pp. 74–82.

  27. Kontinen, A., Peltonen, P., and Huhma, H., Description and Genetic Modelling of the Outokumpu-Type Rock Assemblage and Associated Sulphide Deposits, Final Technical Report for Geomex, Geol. Surv. Finland, 2006.

    Google Scholar 

  28. Kurnosov, V.B. and Konovalov, Yu.I., Changes in the mineral and chemical composition of sills during their intrusion emplacement into the sedimentary cover, Guaymas Basin, Gulf of California (DSDP Holes 477, 477A, 478, 481/481A), Russ. J. Pacif. Geol., 2022, vol. 41, no. 3, pp. 243–256. https://doi.org/10.30911/0207-4028-2022-41-3-76-91

    Article  Google Scholar 

  29. Kuznetsov, V.G., Evolution of silica accumulation in the Earth’s history and its relationship with the biota evolution, Dokl. Earth Sci., 2011, vol. 441, no. 6, pp. 813–817.

    Article  Google Scholar 

  30. Ling, H.F., Chen, X., Li, D., et al., Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater, Precambr. Res., 2013, vol. 225, pp. 110–127.

    Article  Google Scholar 

  31. Louis, P., Messaoudene, A., Jrada, H., et al., Understanding rare earth elements concentrations, anomalies and fluxes at the river basin scale: The Moselle River (France) as a case study, Sci. Total Envir., 2020, vol. 742, pp. 1–12. https://doi.org/10.1016/j.scitotenv.2020.140619

    Article  Google Scholar 

  32. Hannah, J.L., Stein, H.J., Zimmerman, A., et al., Re-Os geochronology of shungite: A 2.05 Ga fossil oil field in Karelia, The 33rd Int. Geol. Congr., Abstracts. Oslo, 2008.

  33. Martin, A.P., Prave, A.R., Condon, D.J., et al., Multiple Palaeoproterozoic carbon burial episodes and excursions, Earth Planet Sci. Lett., 2015, vol. 424, pp. 226–236.

    Article  Google Scholar 

  34. Maslov, A.V., Krupenin, M.T., Gareev, E.Z., and Petrov, G.A., Assessment of the redox setting in Riphean and Vendian sedimentation on the western slope of the Urals, Litosfera, 2003, no. 2, pp. 75–93.

  35. Medvedev, P.V., Fossil oil, organic matter and fossils in Lower Proterozoic rocks of the Onega synclinorium, Uchen. Zap. PetrGU, 2009, no. 5, pp. 54–60.

  36. Medvedev, P.V., Romashkin, A.E., and Filippov, M.M., Nature of the initial organic matter and peculiarities of the microtexture of shungite rocks, Geologiya i poleznye iskopaemye Karelii (Geology and Mineral Minerals in Karelia), Inst. Geol. Karel. Nauchn. Tsentra RAN, Petrozavodsk: KarNTs RAN, 1998, pp.. 120–128.

  37. Medvedev, P.V., Philippov, M.M., Romashkin, A.E., and Vavra, N., Primary organic matter and lithofacies of siliceous shungite rocks from Karelia, N. Jahrb. Geol. Palaont., 2001, vol. 11, pp. 641–658.

    Google Scholar 

  38. Melezhik, V.A., Fallick, A.E., Filippov, M.M., et al., Karelian shungite—an indication of 2.0-Ga-old metamorphosed oil-shale and generation of petroleum: geology, lithology and geochemistry, Earth-Sci. Rev., 1999, vol. 47, pp. 1–40.

    Article  Google Scholar 

  39. Melezhik, V.A., Črne, A.E., Prave, A.R., et al., The Onega Basin, in Reading the Archive of Earth’s Oxygenation. V. 2. The Core Archive of the Fennoscandian Arctic Russia – Drilling Early Earth Project. Series: Frontiers in Earth Sciences, Melezhik, V.A. et al., Eds., Heidelberg: Springer, 2013, pp. 769–1046. https://doi.org/10.1007/978-3-642-29659-8_4

  40. Novikova, G.V., Shul’ga, N.A., Lobus, N.V., and Bogdanova, O.Yu., Adsorption of heavy metal cations by base metal sulfides in the Broken Spur and TAG hydrothermal fields, Atlantic Ocean, Lith. Miner. Resour., 2020, no. 1, pp. 55–62.

  41. Obshchaya stratigraficheskaya shkala nizhnego dokembriya Rossii. Ob"yasnitel’naya zapiska (General Stratigraphic Scale of the Lower Precambrian in Russia: Explanatory Note), Apatity: KNTs RAN, 2002.

  42. Onezhskaya paleoproterozoiskaya struktura (geologiya, tektonika, glubinnoe stroenie i minerageniya) (The Paleoproterozoic Onega Structure: Geology, Tectonics, Deep Structure, and Minerageny), Glushanin, L.V., Sharov, N.V., and Shchiptsov, V.V,, Eds., Petrozavodsk: KarNTs RAN, 2011.

  43. Outokumpu Deep Drilling Project 2003–2010, Kukkonen, I.T., Ed., Geol. Surv. Finland. Spec. Pap., 2011, vol. 51.

  44. Ovchinnikova, G.V., Kuznetsov, A.B., Melezhik, V.A., Gorokhov, I.M., Vasil’eva, I.M., and Gorokhovskii, B.M., The Pb-Pb age of Jatulian carbonate rocks: Tulomozo Foemation in southeastern Karelia, Stratigr. Geol. Correl., 2007, vol. 15, no. 4, pp. 18–30.

    Article  Google Scholar 

  45. Priyatkina, N., Khudoley, A.K., Ustinov, V.N., and Kullerud, K., 1.92 Ga kimberlitic rocks from Kimozero, NW Russia: Their geochemistry, tectonic setting and unusual ?eld occurrence, Precambr. Res., 2014, vol. 249, pp. 162–179.

    Article  Google Scholar 

  46. Puchtel, I.S., Arndt, N.T., Hofmann, A.W., et al., Petrology of mafic lavas within the Onega plateau, central Karelia: evidence for 2.0 Ga plume-related continental crustal growth in the Baltic Shield, Contrib. Mineral. Petrol., 1998, vol. 130, pp. 134–153.

    Article  Google Scholar 

  47. Puchtel, I.S., Brugmann, G.E., and Hofmann, A.W., Precise Re-Os mineral isochron and Pb-Nd-Os isotope systematics of a mafic-ultramafic sill in the 2.0 Ga Onega plateau (Baltic Shield), Earth Planet, Sci. Lett., 1999, vol. 170, pp. 447–461.

    Article  Google Scholar 

  48. Rodler, A.S., Frei, R., Gaucher, C., and Germs, G.J.B., Chromium isotope, REE and redox-sensitive trace element chemostratigraphy across the late Neoproterozoic Ghaub glaciation, Otavi Group. Namibia, Precambr. Res., 2016, vol. 286, pp. 234–249.

  49. Romashkin, A.E., Rychanchik, D.V., and Golubev, A.I., The REE geochemistry of carbon-bearing rocks in the Onega structure, in Geologiya i poleznye iskopaemye Karelii (Geology and Mineral Resources of Karelia), Petrozavodsk: KarNTs RAN, 2014, no. 17, pp. 74–85.

  50. Rusakov, V.Yu., Mechanisms of the formation of marine hydrothermal-sedimentary rocks: Evidence from Quaternary hydrothermal fields in thwe Mid-Atlantic Ridge and Middle Paleozoic hydrothermal-sedimentary deposits in the Middle Urals, Extended Abstract, DSc (Geol.–Miner.) Dissertation), Moscow: GEOKhI, 2014.

  51. Santos, R.V., Dantas, E.L., de Oliveira, C.G., et al., Geochemical and thermal effects of basic sill on black shales and limestones of the Permian Irati Formation, J. South Am. Earth Sci., 2009, vol. 28, no. 1. https://doi.org/10.1016/j.jsames.2008.12.002

  52. Savel’eva, O.L., Savel’ev, D.P., and Palesskii, S.V., Carbonaceous rocks in Cretaceous deposits of the Kamchatsky Mys Peninsula: Geochemistry, metal accumulation, and sedimentation conditions, Russ. J. Pacif. Geol., 2021, vol. 40, no. 3, pp. 211–223.

    Article  Google Scholar 

  53. Scott, C. and Lyons, T.W., Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies, Chem. Geol., 2012, nos Iss. 324-325, pp. 19–27. https://doi.org/10.1016/j.chemgeo.2012.05.012

  54. Shatrov, V.A. and Voitsekhovskii, G.V., Application of lanthanoides for reconstructing the sedimentation settings in the Phanerozic and Proterozoic, with sections of the cover and basemant of the South European Platform, Geochem. Int., 2009, no. 8, pp. 795–813.

  55. Stepanova, A.V., Sal’nikova, E.B., Samsonov, A.V., et al., Main 2.0 Ga magmatism in the Onega structure in the Fennoscandian Shield: First results of the U-Pb (ID-TIMS) dating of baddeleyite, Vozrast i korrelyatsiya magmaticheskikh, metamorficheskikh, osadochnykh iIrudoobrazuyushchikh protsessov (Age and Correlation of Igneous, Metamorphic, Sedimentary, and Ore-Forming Processes), St.-Petersb., 2022, pp. 148–149.

    Google Scholar 

  56. Stepanova, A.V., Samsonov, A.V., and Larionov, A.N., Final episode of the Middle Paleoproterozoic in the Onega structure: Data on dolerites in the Transonega region, Trudy KarNTs RAN, 2014, no. 1, pp. 3–6.

  57. Svetov, S.A., Stepanova, A.V., Chazhengina, S.Yu., et al., Precision (ICP-MS, LA-ICP-MS) analysis of the composition of rocks and minerals: Method and appraisal of the precision of results, with the Early Precambrian mafc complexes as example, Trudy KarNTs RAN, 2015, no. 7, pp. 54–73. https://doi.org/10.17076/geo140

  58. Takaya, Y., Yasukawa, K., Kawasaki, T., et al., The tremendous potential of deep-sea mud as a source of rare-earth elements, Nature, Scientific Reports, 2018. Article № 5763. https://doi.org/10.1038/s41598-018-23948-5

  59. Tribovillard, N., Algeo, T.J., Lyons, T., and Riboulleau, A., Trace metals as paleoredox and paleoproductivity proxies: an update, Chem. Geol., 2006, vol. 232, no. 1–2, pp. 12–32.

    Article  Google Scholar 

  60. Vasil’ev, V.I., Zhatnuev, N.S., Rychagov, S.N., Vasil’eva, E.V., and Sanzhiev, G.D., Mass transfer and mineral formation in the magmatic-hydrothermal systems: Based on the results of the numerical physical-chemical modeling, Litosfera, 2010, no. 3, pp. 145–152.

  61. Volokhin, Yu.G. and Ivanov, V.V., Geochemistry and Metal Potential of Triassic Carbonaceous Silicites in Sikhote Alin, Lith. Miner. Resour., 2007, no. 4, pp. 406–425.

  62. Volokhin, Yu.G. and Karabtsov, A.A., Noble metals in Triassic carbonaceous cherts of the Sikhote-Alin, Dokl. Earth Sci., 2009, vol. 426, no. 1, pp. 574–579.

    Article  Google Scholar 

  63. Webb, G.E. and Kamber, B.S., Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy, Geochim. Cosmochim Acta, 2000, vol. 64, pp. 1557–1565.

    Article  Google Scholar 

  64. Yudovich, Ya.E. and Ketris, M.P., Osnovnye zakonomernosti geokhimii margantsa (Main Regularities of Manganese Geochemixtry), Syktyvkar: Komi NTs UrO RAN, 2013.

  65. Yudovich, Ya.E., and Ketris, M.P., Geokhimiya chernykh slantsev (Geochemistry of Black Shales), Moscow: Direkt-Media, 2015.

Download references

ACKNOWLEDGMENTS

We are grateful to the employees of the Analytical Center of the Institute of Geology, Karelian Research Centre, Russian Academy of Sciences, for help with lydite study.

Funding

The work was carried out under the government-financed task of the Institute of Geology, Karelian Research Centre, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. I. Kondrashova or P. V. Medvedev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrashova, N.I., Medvedev, P.V. Lydites in the North Onega Synclinorium, Karelia: Trace Element Composition and Possible Genesis. Lithol Miner Resour 58, 606–620 (2023). https://doi.org/10.1134/S0024490223700219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490223700219

Keywords:

Navigation