Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Molecularly Imprinted Electrochemical Sensor Based on Reduced Graphene Oxide-Gold Nanoparticles-Poly(p-aminobenzoic Acid) Nanocomposites for the Determination of Sunset Yellow

Author(s): Youyuan Peng* and Zhuojialu Li

Volume 19, Issue 10, 2023

Published on: 10 November, 2023

Page: [704 - 713] Pages: 10

DOI: 10.2174/0115734110266992231103061540

Abstract

Background: In this work, the reduced graphene oxide decorated with gold nanoparticles (Au/rGO) had been synthesized on glass carbon electrode (GCE) using a simple one-step electrochemical method. The molecularly imprinted poly(p-aminobenzoic acid) (PABA) film was prepared for the analysis of sunset yellow (SY) on Au/rGO/GCE by electropolymerization of p-aminobenzoic acid (pABA) and SY.

Methods: Methods, such as scanning electron microscope (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize the successful formation of imprinted films.

Results: Under optimized experimental conditions, the Au/rGO/GCE based molecularly imprinted sensor (MIP/Au/rGO/GCE) exhibited excellent performance for SY, and a linear range was obtained from 0.002 μM to 8 μM with a detection limit of 0.5 nM. The responses of the imprinted sensor maintained higher than 93% of the initial values after 15 days of storage.

Conclusion: The MIP/Au/rGO/GCE has been used for the sensitive and selective detection of SY in real food samples with acceptable recoveries, the combination of Au and rGO significantly improved the sensitivity of the proposed sensor due to the synergistic effect of gold nanoparticles and rGO. The resulting sensor also exhibited satisfactory reproducibility and stability, and the proposed platform could be further expected for the detection of other food additives and various electroactive species.

Keywords: Reduced graphene oxide, gold nanoparticles, poly(p-aminobenzoic acid), sunset yellow, molecularly imprinted polymer, electrochemical sensor.

Graphical Abstract
[1]
Cai, Y.; Li, X.; Wu, K.; Yang, X. Electrochemical sensing performance of Eu-BTC and Er-BTC frameworks toward sunset yellow. Anal. Chim. Acta, 2019, 1062, 78-86.
[http://dx.doi.org/10.1016/j.aca.2019.02.030] [PMID: 30947998]
[2]
Rovina, K.; Siddiquee, S.; Shaarani, S.M. Highly sensitive electrochemical determination of sunset yellow in commercial food products based on CHIT/GO/MWCNTs/AuNPs/GCE. Food Control, 2017, 82, 66-73.
[http://dx.doi.org/10.1016/j.foodcont.2017.06.029]
[3]
Yu, L.; Shi, M.; Yue, X.; Qu, L. A novel and sensitive hexadecyltrimethyl ammonium bromide functionalized graphene supported platinum nanoparticles composite modified glassy carbon electrode for determination of sunset yellow in soft drinks. Sens. Actuators B Chem., 2015, 209, 1-8.
[http://dx.doi.org/10.1016/j.snb.2014.10.098]
[4]
Patel, R.B.; Patel, M.R.; Patel, A.A.; Shah, A.K.; Patel, A.G. Separation and determination of food colours in pharmaceutical preparations by column chromatography. Analyst (Lond.), 1986, 111(5), 577-578.
[http://dx.doi.org/10.1039/an9861100577] [PMID: 3740429]
[5]
Coelho, T.M.; Vidotti, E.C.; Rollemberg, M.C.; Medina, A.N.; Baesso, M.L.; Cella, N.; Bento, A.C. Photoacoustic spectroscopy as a tool for determination of food dyes: Comparison with first derivative spectrophotometry. Talanta, 2010, 81(1-2), 202-207.
[http://dx.doi.org/10.1016/j.talanta.2009.11.058] [PMID: 20188909]
[6]
Dinç, E.; Baydan, E.; Kanbur, M.; Onur, F. Spectrophotometric multicomponent determination of sunset yellow, tartrazine and allura red in soft drink powder by double divisor-ratio spectra derivative, inverse least-squares and principal component regression methods. Talanta, 2002, 58(3), 579-594.
[http://dx.doi.org/10.1016/S0039-9140(02)00320-X] [PMID: 18968786]
[7]
Lorenzo, R.A.; Pena, M.T.; Fernández, P.; González, P.; Carro, A.M. Artificial sweeteners in beverages by ultra performance liquid chromatography with photodiode array and liquid chromatography tandem mass spectrometry. Food Control, 2015, 47, 43-52.
[http://dx.doi.org/10.1016/j.foodcont.2014.06.035]
[8]
Ezhil Vilian, A.T.; Kang, S.M.; Yeong Oh, S.; Woo Oh, C.; Umapathi, R.; Suk Huh, Y.; Han, Y.K. A simple strategy for the synthesis of flower-like textures of Au-ZnO anchored carbon nanocomposite towards the high‐performance electrochemical sensing of sunset yellow. Food Chem., 2020, 323, 126848.
[http://dx.doi.org/10.1016/j.foodchem.2020.126848] [PMID: 32330645]
[9]
Darabi, R.; Shabani-Nooshabadi, M. NiFe2O4-rGO/ionic liquid modified carbon paste electrode: An amplified electrochemical sensitive sensor for determination of Sunset Yellow in the presence of Tartrazine and Allura Red. Food Chem., 2021, 339, 127841.
[http://dx.doi.org/10.1016/j.foodchem.2020.127841] [PMID: 32858382]
[10]
Hatamluyi, B.; Sadeghian, R.; Malek, F.; Boroushaki, M.T. Improved solid phase extraction for selective and efficient quantification of sunset yellow in different food samples using a novel molecularly imprinted polymer reinforced by Fe3O4@UiO-66-NH2. Food Chem., 2021, 357, 129782.
[http://dx.doi.org/10.1016/j.foodchem.2021.129782] [PMID: 33894570]
[11]
Ji, L.; Peng, L.; Chen, T.; Li, X.; Zhu, X.; Hu, P. Facile synthesis of Fe-BTC and electrochemical enhancement effect for sunset yellow determination. Talanta Open, 2022, 5, 100084.
[http://dx.doi.org/10.1016/j.talo.2022.100084]
[12]
Tahtaisleyen, S.; Gorduk, O.; Sahin, Y. Electrochemical determination of sunset yellow using an electrochemically prepared graphene oxide modified-pencil graphite electrode (EGO-PGE). Anal. Lett., 2021, 54(3), 394-416.
[http://dx.doi.org/10.1080/00032719.2020.1767120]
[13]
Wen, L.; Wang, J.; Liu, Z.; Tao, C.; Rao, J.; Hang, J.; Li, Y. A portable acetylcholinesterase-based electrochemical sensor for field detection of organophosphorus. RSC Advances, 2023, 13(10), 6389-6395.
[http://dx.doi.org/10.1039/D2RA05383G] [PMID: 36874943]
[14]
Umapathi, R.; Park, B.; Sonwal, S.; Rani, G.M.; Cho, Y.; Huh, Y.S. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci. Technol., 2022, 119, 69-89.
[http://dx.doi.org/10.1016/j.tifs.2021.11.018]
[15]
Umapathi, R.; Ghoreishian, S.M.; Sonwal, S.; Rani, G.M.; Huh, Y.S. Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coord. Chem. Rev., 2022, 453, 214305.
[http://dx.doi.org/10.1016/j.ccr.2021.214305]
[16]
Umapathi, R.; Venkateswara Raju, C.; Majid Ghoreishian, S.; Mohana Rani, G.; Kumar, K.; Oh, M-H.; Pil Park, J.; Suk Huh, Y. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants. Coord. Chem. Rev., 2022, 470, 214708.
[http://dx.doi.org/10.1016/j.ccr.2022.214708]
[17]
Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y.; Pil Park, J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev., 2023, 476, 214920.
[http://dx.doi.org/10.1016/j.ccr.2022.214920]
[18]
Zhang, X.J.; Wang, G.S.; Cao, W.Q.; Wei, Y.Z.; Liang, J.F.; Guo, L.; Cao, M.S. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces, 2014, 6(10), 7471-7478.
[http://dx.doi.org/10.1021/am500862g] [PMID: 24779487]
[19]
Peng, Y.; Zhang, X. Selective and sensitive determination of folic acid based on molecularly imprinted poly(o-aminophenol) and reduced graphene oxide decorated with Au nanoparticles. Curr. Anal. Chem., 2021, 17(8), 1201-1210.
[http://dx.doi.org/10.2174/1573411017666201228164811]
[20]
Kong, F.; Luo, J.; Jing, L.; Wang, Y.; Shen, H.; Yu, R.; Sun, S.; Xing, Y.; Ming, T.; Liu, M.; Jin, H.; Cai, X. Reduced graphene oxide and gold nanoparticles-modified electrochemical aptasensor for highly sensitive detection of doxorubicin. Nanomaterials (Basel), 2023, 13(7), 1223-1235.
[http://dx.doi.org/10.3390/nano13071223] [PMID: 37049316]
[21]
Zhong, S.L.; Zhuang, J.; Yang, D.P.; Tang, D. Eggshell membrane-templated synthesis of 3D hierarchical porous Au networks for electrochemical nonenzymatic glucose sensor. Biosens. Bioelectron., 2017, 96, 26-32.
[http://dx.doi.org/10.1016/j.bios.2017.04.038] [PMID: 28458131]
[22]
Pereira, T.C.; Stradiotto, N.R. Electrochemical sensing of lactate by using an electrode modified with molecularly imprinted polymers, reduced graphene oxide and gold nanoparticles. Mikrochim. Acta, 2019, 186, 764-773.
[23]
Zhang, H.; Kang, Z.; Zhu, H.; Lin, H.; Yang, D.P. ZnO/C nanocomposite grafted molecularly imprinted polymers as photoelectrochemical sensing interface for ultrasensitive and selective detection of chloramphenicol. Sci. Total Environ., 2023, 859(Pt 1), 160284.
[http://dx.doi.org/10.1016/j.scitotenv.2022.160284] [PMID: 36403831]
[24]
Qi, P.; Wang, J.; Wang, X.; Wang, Z.; Xu, H.; Di, S.; Wang, Q.; Wang, X. Sensitive and selective detection of the highly toxic pesticide carbofuran in vegetable samples by a molecularly imprinted electrochemical sensor with signal enhancement by AuNPs. RSC Advances, 2018, 8(45), 25334-25341.
[http://dx.doi.org/10.1039/C8RA05022H] [PMID: 35539762]
[25]
Liang, A.; Tang, S.; Liu, M.; Yi, Y.; Xie, B.; Hou, H.; Luo, A. A molecularly imprinted electrochemical sensor with tunable electrosynthesized Cu-MOFs modification for ultrasensitive detection of human IgG. Bioelectrochemistry, 2022, 146, 108154.
[http://dx.doi.org/10.1016/j.bioelechem.2022.108154] [PMID: 35550252]
[26]
Karazan, Z.M.; Roushani, M. A new method for electrochemical determination of Hippuric acid based on molecularly imprinted copolymer. Talanta, 2022, 246, 123491.
[http://dx.doi.org/10.1016/j.talanta.2022.123491] [PMID: 35462246]
[27]
Cherian, A.R.; Benny, L.; Varghese, A.; John, N.S.; Hegde, G. Molecularly imprinted scaffold based on poly(3-aminobenzoic acid) for electrochemical sensing of vitamin B6. J. Electrochem. Soc., 2021, 168(7), 077512.
[http://dx.doi.org/10.1149/1945-7111/ac1494]
[28]
Qin, C.; Guo, W.; Liu, Y.; Liu, Z.; Qiu, J.; Peng, J. A novel electrochemical sensor based on graphene oxide decorated with silver nanoparticles–molecular imprinted polymers for determination of sunset yellow in soft drinks. Food Anal. Methods, 2017, 10(7), 2293-2301.
[http://dx.doi.org/10.1007/s12161-016-0753-6]
[29]
Yin, Z.Z.; Cheng, S.W.; Xu, L.B.; Liu, H.Y.; Huang, K.; Li, L.; Zhai, Y.Y.; Zeng, Y.B.; Liu, H.Q.; Shao, Y.; Zhang, Z.L.; Lu, Y.X. Highly sensitive and selective sensor for sunset yellow based on molecularly imprinted polydopamine-coated multi-walled carbon nanotubes. Biosens. Bioelectron., 2018, 100, 565-570.
[http://dx.doi.org/10.1016/j.bios.2017.10.010] [PMID: 29024921]
[30]
Malik, S.; Khan, A.; Rahman, G.; Ali, N.; Khan, H.; Khan, S.; Sotomayor, M.D.P.T. Core-shell magnetic molecularly imprinted polymer for selective recognition and detection of sunset yellow in aqueous environment and real samples. Environ. Res, 2022, 212(Pt A), 113209.
[http://dx.doi.org/10.1016/j.envres.2022.113209] [PMID: 35378121]
[31]
Bonyadi, S.; Ghanbari, K. Development of highly sensitive and selective sensor based on molecular imprinted polydopamine-coated silica nanoparticles for electrochemical determination of sunset yellow. Microchem. J., 2021, 167, 106322.
[http://dx.doi.org/10.1016/j.microc.2021.106322]
[32]
Arvand, M.; Zamani, M.; Sayyar Ardaki, M. Rapid electrochemical synthesis of molecularly imprinted polymers on functionalized multi-walled carbon nanotubes for selective recognition of sunset yellow in food samples. Sens. Actuators B Chem., 2017, 243, 927-939.
[http://dx.doi.org/10.1016/j.snb.2016.12.077]
[33]
Zhang, H.; Pan, Q.; Cai, W.; Shi, X.; Yang, D.P.; Lin, H.; Qiu, E. C-doped ZnO nanocomposites molecularly imprinted photoelectrochemical sensor for ultrasensitive and selective detection of oxytetracycline in milk. Food Chem., 2023, 426, 136535.
[http://dx.doi.org/10.1016/j.foodchem.2023.136535] [PMID: 37331139]
[34]
Peng, Y.; Wu, Z.; Liu, Z. An electrochemical sensor for paracetamol based on an electropolymerized molecularly imprinted o-phenylenediamine film on a multi-walled carbon nanotube modified glassy carbon electrode. Anal. Methods, 2014, 6(15), 5673-5681.
[http://dx.doi.org/10.1039/C4AY00753K]
[35]
Turco, A.; Corvaglia, S.; Mazzotta, E. Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: Study of imprinting parameters. Biosens. Bioelectron., 2015, 63, 240-247.
[http://dx.doi.org/10.1016/j.bios.2014.07.045] [PMID: 25104433]
[36]
Kaya, H.K.; Cinar, S.; Altundal, G. Bayramlı Y.; Unaleroglu, C.; Kuralay, F. A novel design thia-bilane structure-based molecular imprinted electrochemical sensor for sensitive and selective dopamine determination. Sens. Actuators B Chem., 2021, 346, 130425-130435.
[http://dx.doi.org/10.1016/j.snb.2021.130425]
[37]
Li, J.; Yin, W.; Tan, Y.; Pan, H. A sensitive electrochemical molecularly imprinted sensor based on catalytic amplification by silver nanoparticles for 3-indoleacetic acid determination. Sens. Actuators B Chem., 2014, 197, 109-115.
[http://dx.doi.org/10.1016/j.snb.2014.02.068]
[38]
Li, C.; Han, D.; Wu, Z.; Liang, Z.; Han, F.; Chen, K.; Fu, W.; Han, D.; Wang, Y.; Niu, L. Polydopamine-based molecularly imprinted electrochemical sensor for the highly selective determination of ecstasy components. Analyst (Lond.), 2022, 147(14), 3291-3297.
[http://dx.doi.org/10.1039/D2AN00351A] [PMID: 35726908]
[39]
Ganjeizadeh Rohani, F.; Mohadesi, A.; Ansari, M. A new diosgenin sensor based on molecularly imprinted polymer of para aminobenzoic acid selected by computer-aided design. J. Pharm. Biomed. Anal., 2019, 174, 552-560.
[http://dx.doi.org/10.1016/j.jpba.2019.04.044] [PMID: 31255855]
[40]
Yang, L.; Xu, B.; Ye, H.; Zhao, F.; Zeng, B. A novel quercetin electrochemical sensor based on molecularly imprinted poly(para-aminobenzoic acid) on 3D Pd nanoparticles-porous graphene-carbon nanotubes composite. Sens. Actuators B Chem., 2017, 251, 601-608.
[http://dx.doi.org/10.1016/j.snb.2017.04.006]
[41]
Jiang, Z.; Liu, Q.; Tang, Y.; Zhang, M. Electrochemical sensor based on a novel Pt-Au bimetallic nanoclusters decorated on reduced graphene oxide for sensitive detection of ofloxacin. Electroanalysis, 2017, 29(2), 602-608.
[http://dx.doi.org/10.1002/elan.201600408]
[42]
Jin, C.; Wan, C.; Dong, R. Electrocatalytic activity enhancement of Pd nanoparticles supported on reduced graphene oxide by surface modification with Au. J. Electrochem. Soc., 2017, 164(9), H696-H700.
[http://dx.doi.org/10.1149/2.0251712jes]
[43]
Yan, S.; Zhang, S.; Zhang, W.; Li, J.; Gao, L.; Yang, Y.; Gao, Y. Application of carbon supported Ptcore -Aushell nanoparticles in methanol electrooxidation. J. Phys. Chem. C, 2014, 118(51), 29845-29853.
[http://dx.doi.org/10.1021/jp5087398]
[44]
Chen, L.X.; Liu, L.; Feng, J.J.; Wang, Z.G.; Wang, A.J. Oligonucleotide-assisted successive coreduction synthesis of dendritic platinum–gold core–shell alloy nanocrystals with improved electrocatalytic performance for methanol oxidation. J. Power Sources, 2016, 302, 140-145.
[http://dx.doi.org/10.1016/j.jpowsour.2015.10.048]
[45]
Zhang, K.; Luo, P.; Wu, J.; Wang, W.; Ye, B. Highly sensitive determination of Sunset Yellow in drink using a poly (l-cysteine) modified glassy carbon electrode. Anal. Methods, 2013, 5(19), 5044-5050.
[http://dx.doi.org/10.1039/c3ay40873f]
[46]
Zhao, L.; Zhao, F.; Zeng, B. Preparation and application of sunset yellow imprinted ionic liquid polymer − ionic liquid functionalized graphene composite film coated glassy carbon electrodes. Electrochim. Acta, 2014, 115, 247-254.
[http://dx.doi.org/10.1016/j.electacta.2013.10.181]
[47]
Setiyanto, H.; Hani, S.M.; Saraswaty, V.; Noviandri, I.; Rusli, H.; Rahayu, R.S.; Azis, M.Y.; Mufti, N. Sunset yellow electrochemical sensor based on a molecularly imprinted Poly-glycine film-decorated pencil graphite electrode. J. Electrochem. Soc., 2023, 170(8), 087503.
[http://dx.doi.org/10.1149/1945-7111/aceab0]
[48]
Arvand, M.; Erfanifar, Z.; Ardaki, M.S. A new core@shell silica-coated magnetic molecular imprinted nanoparticles for selective detection of sunset yellow in food samples. Food Anal. Methods, 2017, 10(7), 2593-2606.
[http://dx.doi.org/10.1007/s12161-017-0803-8]
[49]
Wu, L.; Wu, T.; Zeng, W.; Zhou, S.; Zhang, W.; Ma, J. A new ratiometric molecularly imprinted electrochemical sensor for the detection of Sunset Yellow based on gold nanoparticles. Food Chem., 2023, 413, 135600.
[http://dx.doi.org/10.1016/j.foodchem.2023.135600] [PMID: 36758389]
[50]
Malik, S.; Khan, A.; Khan, H.; Rahman, G.; Ali, N.; Khan, S.; Sotomayor, M.D.P.T. Biomimetic electrochemical sensors based on core-shell imprinted polymers for targeted sunset yellow estimation in environmental samples. Biosensors (Basel), 2023, 13(4), 429-446.
[http://dx.doi.org/10.3390/bios13040429] [PMID: 37185506]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy