Skip to main content
Log in

A criterion for Q-tensors

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

A tensor \({\mathcal {A}}\) of order m and dimension n is called a \({\mathrm Q}\)-tensor if the tensor complementarity problem has a solution for all \(\mathbf{{q}} \in {{\mathbb {R}}^n}\). This means that for every vector \(\mathbf{{q}}\), there exists a vector \({\mathbf{{u}}}\) such that \({\mathbf{{u}}} \ge \textbf{0},{\textbf{w}} = {\mathcal {A}}{\mathbf{{u}}}^{m-1}+\mathbf{{q}} \ge \textbf{0},~\text {and}~ {\mathbf{{u}}}^{T}{\textbf{w}} = 0\). In this paper, we prove that within the class of rank-one symmetric tensors, the \({\mathrm Q}\)-tensors are precisely the positive tensors. Additionally, for a symmetric \({\mathrm Q}\)-tensor \({\mathcal {A}}\) of order m and dimension 2 with \({ rank({\mathcal {A}})=2}\), we show that \({\mathcal {A}}\) is an \(\textrm{R}_{0}\)-tensor. The idea is inspired by the recent work of Parthasarathy et al. (J Optim Theory Appl 195:131–147, 2022) and Sivakumar et al. (Linear Multilinear Algebra 70:6947–6964, 2021) on \({\mathrm Q}\)-matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balaji, R., Palpandi, K.: Positive definite and Gram tensor complementarity problems. Optim. Lett. 12, 639–648 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blekherman, G., Teitler, Z.: On maximum, typical and generic ranks. Math. Ann. 362, 1021–1031 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Comon, P., Golub, G., Lim, L.-H., Murrain, B.: Symmetric tensors and symmetric tensor rank. SIAM. J. Matrix Anal. Appl. 30(3), 1254–1279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  5. Huang, Z.H., Qi, L.: Tensor complementarity problems-part I: basic theory. J. Optim. Theory Appl. 183, 1–23 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang, Z.H., Qi, L.: Tensor complementarity problems-part III: applications. J. Optim. Theory Appl. 183, 771–791 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang, Z.H., Suo, Y., Wang, J.: On \({\rm Q }\)-tensors. Pacific J. Optim. 16(1), 67–86 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Kolda, T.G., Bader, B.D.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, G., Li, J.: \({\rm QN}\)-tensor and tensor complementarity problem. Optim. Lett. 16(9), 2729–2751 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mei, W., Yang, Q.: Properties of structured tensors and complementarity problems. J. Optim. Theory Appl. 185, 99–114 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Murty, K.G., Yu, F.-T.: Linear Complementarity. Linear and Nonlinear Programming. Heldermann Verlag, Berlin (1988)

    MATH  Google Scholar 

  12. Palpandi, K., Sharma, S.: Tensor complementarity problems with finite solution sets. J. Optim. Theory Appl. 190, 951–965 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Parthasarathy, T., Ravindran, G., Kumar, S.: On semimonotone matrices, \(\text{ R}_{0}\)-matrices and \({\rm Q}\)-matrices. J. Optim. Theory Appl. 195(1), 131–147 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sivakumar, K.C., Sushmitha, P., Tsatsomeros, M.: \(\text{ Q}_\#\)-matrices and \(\text{ Q}_{\dagger }\)-matrices: two extensions of the Q-matrix concept. Linear Multilinear Algebra. 70(21), 6947–6964 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Song, Y., Qi, L.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. App. Math. 33(3), 308–323 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Song, Y., Qi, L.: Properties of some classes of structured tensors. J. Optim. Theory Appl. 165, 854–873 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Song, Y., Yu, G.: Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl. 170(1), 85–96 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Qi, L., Huang, Z.H.: Tensor complementarity problems-part II: solution methods. J. Optim. Theory Appl. 183, 365–385 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications. Springer, Singapore (2018)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the editor and the anonymous referees for their helpful and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Palpandi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Palpandi, K. A criterion for Q-tensors. Optim Lett (2023). https://doi.org/10.1007/s11590-023-02074-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11590-023-02074-w

Keywords

Navigation