Skip to main content
Log in

Mutually disjoint Steiner systems from BCH codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Liu et al. (IEEE Trans Inf Theory 68:3096–3107, 2022) investigated a class of BCH codes \(\mathcal {C}_{(q,q+1,\delta ,1)}\) with \(q=\delta ^m\) a prime power and proved that the set \(\mathcal {B}_{\delta +1}\) of supports of the minimum weight codewords supports a Steiner system \({{\text {S}}}(3,\delta +1,q+1)\). In this paper, we give an equivalent formulation of \(\mathcal {B}_{\delta +1}\) in terms of elementary symmetric polynomials and then construct a number of mutually disjoint Steiner systems S\((3,\delta +1,\delta ^m+1)\) when m is even and a number of mutually disjoint G-designs G\(\big ({\frac{\delta ^m+1}{\delta +1}},\delta +1,\delta +1,3\big )\) when m is odd. In particular, the existence of three mutually disjoint Steiner systems \({{\text {S}}}(3,5,4^m+1)\) or three mutually disjoint G-designs G\(\big ({\frac{4^m+1}{5}},5,5,3\big )\) is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

All data generated or analysed during this study are included in this paper.

References

  1. Angata M., Shiromoto K.: Mutually disjoint \(5\)-designs from Pless symmetry codes. J. Stat. Theory Pract. 6, 78–87 (2012).

    Article  MathSciNet  Google Scholar 

  2. Araya M., Harada M.: Mutually disjoint Steiner systems \(\text{S}(5, 8, 24)\) and \(5\)-\((24,12,48)\) designs. Electron. J. Comb. 17, N1 (2010).

  3. Araya M., Harada M., Tonchev V.D., Wassermann A.: Mutually disjoint designs and new \(5\)-designs derived from groups and codes. J. Comb. Des. 18, 305–317 (2010).

    Article  MathSciNet  Google Scholar 

  4. Ding C., Tang C.: Infinite families of near MDS codes holding \(t\)-designs. IEEE Trans. Inf. Theory 66, 5419–5428 (2020).

    Article  MathSciNet  Google Scholar 

  5. Ding C., Tang C., Tonchev V.D.: The projective general linear group PGL\((2,2^m)\) and linear codes of length \(2^m+1\). Des. Codes Cryptogr. 89, 1713–1734 (2021).

    Article  MathSciNet  Google Scholar 

  6. Etzion T.: Partitions for quadruples. Ars Comb. 36, 296–308 (1993).

    MathSciNet  Google Scholar 

  7. Etzion T., Hartman A.: Towards a large set of Steiner quadruple systems. SIAM J. Discret. Math. 4, 182–195 (1991).

    Article  MathSciNet  Google Scholar 

  8. Fang J., Chang Y.: Mutually disjoint \(t\)-designs and \(t\)-SEEDs from extremal doubly-even self-dual codes. Des. Codes Cryptogr. 73, 769–780 (2014).

    Article  MathSciNet  Google Scholar 

  9. Fang J., Chang Y.: Mutually disjoint \(5\)-designs and \(5\)-spontaneous emission error designs from extremal ternary self-dual codes. J. Comb. Des. 23, 78–89 (2015).

    Article  MathSciNet  Google Scholar 

  10. Heinemann E.R.: Generalized Vandermonde determinants. Trans. Am. Math. Soc. 31, 464–476 (1929).

    Article  MathSciNet  Google Scholar 

  11. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  12. Jimbo M., Shiromoto K.: A construction of mutually disjoint Steiner systems from isomorphic Golay codes. J. Comb. Theory Ser. A 116, 1245–1251 (2009).

    Article  MathSciNet  Google Scholar 

  13. Kramer E.S., Magliveras S.S.: Some mutually disjoint Steiner systems. J. Comb. Theory Ser. A 17, 39–43 (1974).

    Article  MathSciNet  Google Scholar 

  14. Lin S., Costello D.J.: Error Control Coding: Fundamentals and Applications. Prentice Hall, Upper Saddle River (2004).

    Google Scholar 

  15. Liu Q., Ding C., Mesnager S., Tang C., Tonchev V.D.: On infinite families of narrow-sense antiprimitive BCH codes admitting \(3\)-transitive automorphism groups and their consequences. IEEE Trans. Inf. Theory 68, 3096–3107 (2022).

    Article  MathSciNet  Google Scholar 

  16. Lu J.: On large sets of disjoint Steiner triple systems, I–III. J. Comb. Theory Ser. A 34, 140–182 (1983).

    Article  MathSciNet  Google Scholar 

  17. Lu J.: On large sets of disjoint Steiner triple systems, IV–VI. J. Comb. Theory Ser. A 37, 136–192 (1984).

    Article  MathSciNet  Google Scholar 

  18. Mendes A., Remmel J.: Counting with Symmetric Functions. Springer, New York (2015).

    Book  Google Scholar 

  19. Muir T.: A Treatise on the Theory of Determinants. Dover Publications Inc, New York (1960).

    Google Scholar 

  20. Tang C., Ding C.: An infinite family of linear codes supporting \(4\)-designs. IEEE Trans. Inf. Theory 67, 244–254 (2021).

    Article  MathSciNet  Google Scholar 

  21. Teirlinck L.: Locally trivial \(t\)-designs and \(t\)-designs without repeated blocks. Discret. Math. 77, 345–356 (1989).

    Article  MathSciNet  Google Scholar 

  22. Van de Vel H.: Numerical treatment of a generalized Vandermonde system of equations. Linear Algebra Appl. 17, 149–179 (1977).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous reviewers for their valuable comments and suggestions that greatly improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junling Zhou.

Additional information

Communicated by Q. Xiang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported in part by National Natural Science Foundation of China (12171028, 12371326) and in part by Beijing Natural Science Foundation (1222013).

A Appendix

A Appendix

Proof of Lemma 2.2

We use induction on the order n of the determinant \(|\textbf{A}|\), which is also the length of the subsequence \(\{a_{t_{i}}\}_{i=1}^{n}\). The base case \(n=1\) is trivial. Suppose that the conclusion holds for any subsequence of length \(n-1\). Then we prove that it also holds for a subsequence \(\{a_{t_{1}},a_{t_{2}},\ldots ,a_{t_{n}}\}\). Consider the subsequence \(\{a_{t_{1}},\ldots ,a_{t_{j-1}},a_{t_{j+1}}\ldots ,a_{t_{n}}\}\) and the submatrix \(\textbf{D}\) of \(\textbf{A}\) by deleting the n-th row and j-th column. By inductive hypothesis, one obtains \(|\textbf{D}|=\sum \limits _{i=1}^{n}E_{i}\cdot x^{i-1},\) where \(E_{i}\) is the determinant of the submatrix \(\textbf{E}_{i}\) of \(\textbf{E}\) by deleting the i-th row and

$$\begin{aligned} \textbf{E}=\left[ \begin{array}{cccccc} a_{t_1} &{}\cdots &{}a_{t_{j-1}} &{}a_{t_{j+1}} &{}\cdots &{}a_{t_{n}} \\ a_{t_{1}+1} &{}\cdots &{}a_{t_{j-1}+1} &{}a_{t_{j+1}+1} &{}\cdots &{}a_{t_{n}+1} \\ \vdots &{} \cdots &{}\vdots &{} \vdots &{} \cdots &{} \vdots \\ a_{t_{1}+n-1} &{} \cdots &{} a_{t_{j-1}+n-1} &{}a_{t_{j+1}+n-1} &{}\cdots &{} a_{t_{n}+n-1} \\ \end{array} \right] _{n\times (n-1)}. \end{aligned}$$

It is not difficult to see that \(E_i=(B_{i})_{n,j}\), namely the complement minor of the (nj)-entry of the matrix \(\textbf{B}_{i}\). Let \(A_{n,j}\) \((1\le j\le n)\) denote the complement minor of the (nj)-entry of \(\textbf{A}\). Then

$$\begin{aligned} A_{n,j}=|\textbf{D}|=\sum \limits _{i=1}^{n}(B_{i})_{n,j}\cdot x^{i-1}. \end{aligned}$$

Thus expanding \(|\textbf{A}|\) along the last row yields

$$\begin{aligned} \begin{array}{l} |\textbf{A}|=\sum \limits _{j=1}^{n}(-1)^{n+j}(a_{t_{j}+n}+xa_{t_{j}+n-1})A_{n,j}\\ \quad =\sum \limits _{j=1}^{n}(-1)^{n+j}(a_{t_{j}+n}+xa_{t_{j}+n-1})\sum \limits _{i=1}^{n}(B_{i})_{n,j}\cdot x^{i-1} \\ \quad =\sum \limits _{i=1}^{n}\sum \limits _{j=1}^{n}(-1)^{n+j}\Big (a_{t_{j}+n}(B_{i})_{n,j}\cdot x^{i-1}+a_{t_{j}+n-1}(B_{i})_{n,j}\cdot x^{i}\Big )\\ \quad =\sum \limits _{j=1}^{n}(-1)^{n+j}a_{t_{j}+n}(B_{1})_{n,j}\cdot x^{0}+\sum \limits _{j=1}^{n}(-1)^{n+j}a_{t_{j}+n-1} (B_{n+1})_{n,j}\cdot x^{n} \\ \quad \quad +\sum \limits _{i=1}^{n-1}\Big (\sum \limits _{j=1}^{n}(-1)^{n+j}a_{t_{j}+n}(B_{i+1})_{n,j}+ \sum \limits _{j=1}^{n}(-1)^{n+j}a_{t_j+n-1}(B_{i})_{n,j}\Big )\cdot x^{i}\\ \quad =B_1+B_{n+1}\cdot x^{n}+\sum \limits _{i=1}^{n-1}\big (B_{i+1}+0\big )\cdot x^{i}\\ \quad =\sum \limits _{i=1}^{n+1}B_{i} \cdot x^{i-1},\\ \end{array} \end{aligned}$$

where the penultimate equation holds because \(\sum \limits _{j=1}^{n}(-1)^{n+j}a_{t_j+n-1}(B_{i})_{n,j}\) is the determinant by replacing the n-th row of \(B_{i}\) by its \((n-1)\)-th row, which equals zero. This completes the proof. \(\square \)

Proof of Lemma 4.4

We apply induction on the order n of the determinant \(|\textbf{A}_{n}|\), which is also the length of the sequence \(\{a_{1},a_{2},\ldots ,a_{n}\}\). The base case \(n = 2\) holds clearly. Thus we suppose that the claim has already been proven for all smaller n. In particular from this inductive hypothesis we already have

$$\begin{aligned} |\textbf{A}_{n-1}|=\sum \limits _{i=0}^{\lceil \frac{n-1}{2}\rceil -1}(-1)^{n-i}(i+1)a_{1}^{i}a_{n-1-i}+a_{1}^{n-1}, \ n \ge 3. \end{aligned}$$
(34)

Then we prove that it also holds for a sequence \(\{a_{1},a_{2},\ldots ,a_{n}\}\). If \(a_{2}=a_{3}=\cdots =a_{\lfloor \frac{n}{2}\rfloor }=0\), then expanding \(|\textbf{A}_{n}|\) along the first column yields

$$\begin{aligned} \begin{array}{rl} |\textbf{A}_{n}|= &{} a_{1}|\textbf{A}_{n-1}|+\sum \limits _{i=0}^{n-2}(-1)^{n-i+1}a_{n-i}A_{n-i,1}\\ =&{}a_{1}|\textbf{A}_{n-1}|+\sum \limits _{i=0}^{\lceil \frac{n}{2}\rceil -1}(-1)^{n-i+1}a_{n-i}A_{n-i,1}.\\ \end{array} \end{aligned}$$
(35)

where \(A_{i,1}\) denotes the complement minor of the (i, 1)-entry of \(\textbf{A}_{n}\). For \(0\le i\le \lceil \frac{n}{2}\rceil -1\), we have

(36)

Note that \(0\le i\le \lceil \frac{n}{2}\rceil -1\le \lfloor \frac{n}{2}\rfloor \). Then \(a_{2}=a_{3}=\cdots =a_{i}=0\). Thus (36) is the same as

$$\begin{aligned} A_{n-i,1}=\left| \begin{array}{ccccc} a_{1} &{} 1&{} \cdots &{} 0 &{} 0 \\ 0 &{} a_{1}&{} \cdots &{} 0 &{} 0 \\ \vdots &{} \vdots &{} \cdots &{} \vdots &{}\vdots \\ 0 &{} 0&{} \cdots &{} a_{1} &{} 1 \\ 0 &{} 0&{} \cdots &{} 0 &{} a_{1} \\ \end{array} \right| _{i\times i}=a_{1}^{i}. \end{aligned}$$
(37)

Plugging (34) and (37) into (35) yields

$$\begin{aligned} |\textbf{A}_{n}|= & {} a_{1}\cdot \left[ \sum \limits _{i=0}^{\lceil \frac{n-1}{2}\rceil -1}(-1)^{n-i}(i+1)a_{1}^{i}a_{n-1-i}+a_{1}^{n-1}\right] +\sum \limits _{i=0}^{\lceil \frac{n}{2}\rceil -1}(-1)^{n-i+1}a_{n-i}\cdot a_{1}^{i}\\= & {} \sum \limits _{i=0}^{\lceil \frac{n-1}{2}\rceil -1}(-1)^{n-i}(i+1)a_{1}^{i+1}a_{n-1-i}+ \sum \limits _{i=0}^{\lceil \frac{n}{2}\rceil -1}(-1)^{n-i+1}a_{1}^{i}a_{n-i}+a_{1}^{n}\\= & {} \sum \limits _{i=0}^{\lceil \frac{n-1}{2}\rceil }(-1)^{n+1-i}ia_{1}^{i}a_{n-i}+ \sum \limits _{i=0}^{\lceil \frac{n}{2}\rceil -1}(-1)^{n-i+1}a_{1}^{i}a_{n-i}+a_{1}^{n}\\= & {} \left\{ \begin{array}{ll} \sum \limits _{i=0}^{\lceil \frac{n}{2}\rceil -1}(-1)^{n-i+1}(i+1)a_{1}^{i}a_{n-i}+a_{1}^{n}, &{}\text {if}\ n\ \text {is odd}; \\ \sum \limits _{i=0}^{\lceil \frac{n}{2}\rceil -1}(-1)^{n-i+1}(i+1)a_{1}^{i}a_{n-i}+a_{1}^{n}+ (-1)^{n-\frac{n}{2}+1}\frac{n}{2} a_{1}^{\frac{n}{2}}a_{n-\frac{n}{2}}, &{}\text {if}\ n\ \text {is even}. \\ \end{array} \right. \end{aligned}$$

If n is even, then \(a_{\frac{n}{2}}=0\) by assumption. Therefore, the conclusion is valid for any n. This completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Zhou, J. Mutually disjoint Steiner systems from BCH codes. Des. Codes Cryptogr. 92, 885–907 (2024). https://doi.org/10.1007/s10623-023-01319-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01319-0

Keywords

Mathematics Subject Classification

Navigation