Skip to main content
Log in

Global Well-Posedness, Mean Attractors and Invariant Measures of Generalized Reversible Gray–Scott Lattice Systems Driven by Nonlinear Noise

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

The main objective of our investigation is to study the global well-posedness as well as stochastic dynamics of a class of generalized reversible Gray–Scott lattice systems (RGSLSs) driven by nonlinear white noise. Compared with the classical stochastic RGSLSs considered in the literature, the generalized stochastic RGSLSs have two significant features: the coupled drift terms have polynomial growth of arbitrary (not cubic) orders, and the diffusion coefficients of the noise are locally Lipschitz. The global well-posedness and existence of mean random attractors are established for the nonautonomous RGSLSs. The existence and limit behavior of invariant probability measures for the autonomous RGSLSs are studied by the idea of uniform tail-estimates due to Wang (Physica D 128:41–52, 1999) and a scaling method used in Gu and Xiang (Appl Math Comput 225:387–400, 2013) in order to surmount the difficulties caused by the noncompactness in infinite-dimensional lattice systems and the coefficient barrier in the z-equation. These results are new even when the arbitrary growth rate of the draft term reduces to the cubic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The famous physical chemist and Nobel Prize laureate (1977).

References

  1. Arnold, L.: Stochastic Differential Equations: Theory and Applications. John Wiley and Sons Inc, New York (1974)

    Google Scholar 

  2. Adomian, G.: The diffusion-Brusselator equation. Comput. Math. Appl. 29, 1–3 (1995)

    MathSciNet  Google Scholar 

  3. Brzeźniak, Z., Motyl, E., Ondrejat, M.: Invariant measure for the stochastic NavierStokes equations in unbounded 2D domains. Ann. Probab. 45(5), 3145–3201 (2017)

    MathSciNet  Google Scholar 

  4. Bates, P.W., Lu, K., Wang, B.: Attractors for lattice dynamical systems. Int. J. Bifur. Chaos 11, 143–153 (2001)

    MathSciNet  Google Scholar 

  5. Bates, P.W., Lisei, H., Lu, K.: Attractors for stochastic lattice dynamical systems. Stoch. Dyn. 6, 1–21 (2006)

    MathSciNet  Google Scholar 

  6. Bates, P.W., Lu, K., Wang, B.: Attractors of non-autonomous stochastic lattice systems in weighted spaces. Physica D 289, 32–50 (2014)

    MathSciNet  Google Scholar 

  7. Beyn, W.J., Pilyugin, S.Y.: Attractors of reaction diffusion systems on infinite lattices. J. Dyn. Differ. Equ. 15, 485–515 (2003)

    MathSciNet  Google Scholar 

  8. Carrol, T.L., Pecora, L.M.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    MathSciNet  Google Scholar 

  9. Caraballo, T., Kloeden, P.E., Schmalfuß, B.: Exponentially stable stationary solutions for stochastic evolution equations and their perturbation. Appl. Math. Optim. 50, 183–207 (2004)

    MathSciNet  Google Scholar 

  10. Caraballo, T., Lu, K.: Attractors for stochastic lattice dynamical systems with a multiplicative noise. Front. Math. China 3, 317–335 (2008)

    MathSciNet  Google Scholar 

  11. Caraballo, T., Morillas, F., Valerom, J.: Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities. J. Differ. Equ. 253, 667–693 (2012)

    MathSciNet  Google Scholar 

  12. Caraballo, T., Morillas, F., Valero, J.: On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discret. Contin. Dyn. Syst. 34(1), 51–77 (2014)

    MathSciNet  Google Scholar 

  13. Caraballo, T., Han, X., Schmalfuß, B., Valero, J.: Random attractors for stochastic lattice dynamical systems with infinite multiplicative white noise. Nonlinear Anal. 130, 255–278 (2016)

    MathSciNet  Google Scholar 

  14. Caraballo, T., Guo, B., Tuan, N.H., Wang, R.: Asymptotically autonomous robustness of random attractors for a class of weakly dissipative stochastic wave equations on unbounded domains. Proc. R. Soc. Edinb. Sect. A 151, 1700–1730 (2021)

    MathSciNet  Google Scholar 

  15. Chen, P., Wang, R., Zhang, X.: Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains. Bulletin Des Sciences Mathématiques 173, 103071 (2021)

    MathSciNet  Google Scholar 

  16. Chen, P., Wang, B., Wang, R., Zhang, X.: Multivalued random dynamics of Benjamin-Bona-Mahony equations driven by nonlinear colored noise on unbounded domains. Mathematische Annalen 386, 343–373 (2022)

    MathSciNet  Google Scholar 

  17. Chen, Z., Li, X., Wang, B.: Invariant measures of stochastic delay lattice systems. Discret. Contin. Dyn. Syst. Ser. B. 26(6), 3235–3269 (2021)

    MathSciNet  Google Scholar 

  18. Chen, Z., Wang, B.: Limit measures of stochastic Schrödinger lattice systems. Proc. Am. Math. Soc. 150(04), 1669–1684 (2022)

    Google Scholar 

  19. Chen, Z., Wang, B.: Weak mean attractors and invariant measures for stochastic Schrödinger delay lattice systems. J. Dyn. Differ. Equ. (2022). https://doi.org/10.1007/s10884-021-10085-3

    Article  Google Scholar 

  20. Deuschel, J.D.: Central limit theorem for an infinite lattice system of interacting diffusion processes. Ann. Probab. 16, 700–716 (1988)

    MathSciNet  Google Scholar 

  21. Erneux, T., Nicolis, G.: Propagating waves in discrete bistable reaction diffusion systems. Physica D 67, 237–244 (1993)

    MathSciNet  Google Scholar 

  22. Feng, J., Liu, H., Xin, J.: Uniform attractors of stochastic three-component Gray-Scott system with multiplicative noise. Math. Found. Comput. 4, 193–208 (2021)

    Google Scholar 

  23. Gu, A., Wang, Z., Zhou, S.: Random Attractors for stochastic three-component reversible Gray-Scott system on infinite lattices. Discret. Dyn. Nat. Soc. 2012, 1–17 (2012)

    MathSciNet  Google Scholar 

  24. Gu, A., Xiang, H.: Upper semicontinuity of random attractors for stochastic three-component reversible Gray-Scott system. Appl. Math. Comput. 225, 387–400 (2013)

    MathSciNet  Google Scholar 

  25. Gu, A., Kloeden, P.E.: Asymptotic behavior of a nonautonomous \(p\)-Laplacian lattice system. Int. J. Bifur. Chaos 26, 1650174 (2016)

    MathSciNet  Google Scholar 

  26. Gu, A.: Asymptotic behavior of random lattice dynamical systems and their Wong-Zakai approximations. Discret. Contin. Dyn. Syst. Ser. B 24(10), 5737–5767 (2019)

    MathSciNet  Google Scholar 

  27. Gray, P., Scott, S.K.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations and instabilities in the system \(a+2b\rightarrow 3b\), \(b\rightarrow c\). Chem. Eng. Sci. 39, 1087–1097 (1984)

    Google Scholar 

  28. Hayase, Y., Brand, H.R.: The Gray-Scott model under the influence of noise: reentrant spatiotemporal intermittency in a reaction-diffusion system. J. Chem. Phys. 123, 1–5 (2005)

    Google Scholar 

  29. Han, X., Shen, W., Zhou, S.: Random attractors for stochastic lattice dynamical systems in weighted spaces. J. Differ. Equ. 250, 1235–1266 (2011)

    MathSciNet  Google Scholar 

  30. Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572 (1987)

    MathSciNet  Google Scholar 

  31. Li, H., Tu, J.: Random attractors for stochastic lattice reversible Gray-Scott systems with additive noise. Electron. J. Differ. Equ. 2015, 1–25 (2015)

    MathSciNet  Google Scholar 

  32. Li, D., Wang, B., Wang, X.: Periodic measures of stochastic delay lattice systems. J. Differ. Equ. 272, 74–104 (2021)

    MathSciNet  Google Scholar 

  33. Li, D., Wang, B., Wang, X.: Limiting behavior of invariant measures of stochastic delay lattice systems. J. Dyn. Differ. Equ. 34, 1453–1487 (2022)

    MathSciNet  Google Scholar 

  34. Mahara, H., Suematsu, N.J., Yamaguchi, T., Ohgane, K., Nishiura, Y., Shimomura, M.: Three-variable reversible Gray-Scott model. J. Chem. Phys. 121, 8968–8972 (2004)

    Google Scholar 

  35. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley-Interscience, Hoboken (1977)

    Google Scholar 

  36. Scott, S.K., Showalter, K.: Simple and complex reaction-diffusion fronts. Chem. Waves Patterns 10, 485–516 (1995)

    Google Scholar 

  37. Schwender, J., Ohlrogge, J., Shachar-Hill, Y.: A flux model of glycolysis and the oxidative pentosephosphate pathway in developing brassica napus embryos. J. Biol. Chem. 278, 29442–29453 (2003)

    Google Scholar 

  38. Termonia, Y., Ross, J.: Oscillations and control features in glycolysis: numerical analysis of a comprehensive model. Proc. Natl. Acad. Sci. USA 78, 2952–2956 (1981)

    MathSciNet  Google Scholar 

  39. Tyson, J.: Some further studies of nonlinear oscillations in chemical systems. J. Chem. Phys. 58, 3919–3930 (1973)

    Google Scholar 

  40. Van Vleck, E., Wang, B.: Attractors for lattice FitzHugh-Nagumo systems. Physica D 212(3–4), 317–336 (2005)

    MathSciNet  Google Scholar 

  41. Wang, B.: Attractors for reaction-diffusion equations in unbounded domains. Physica D 128, 41–52 (1999)

    MathSciNet  Google Scholar 

  42. Wang, B.: Weak pullback attractors for mean random dynamical systems in Bochner spaces. J. Dyn. Differ. Equ. 31, 2177–2204 (2019)

    MathSciNet  Google Scholar 

  43. Wang, B.: Dynamics of stochastic reaction-diffusion lattice system driven by nonlinear noise. J. Math. Anal. Appl. 477(1), 104–132 (2019)

    MathSciNet  Google Scholar 

  44. Wang, B.: Dynamics of fractional stochastic reaction-diffusion equations on unbounded domains driven by nonlinear noise. J. Differ. Equ. 268, 1–59 (2019)

    MathSciNet  Google Scholar 

  45. Wang, R., Li, Y., Wang, B.: Random dynamics of fractional nonclassical diffusion equations driven by colored noise. Discret. Contin. Dyn. Syst. A 39, 4091–4126 (2019)

    MathSciNet  Google Scholar 

  46. Wang, R., Shi, L., Wang, B.: Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on \({\mathbb{R} }^N\). Nonlinearity 32, 4524–4556 (2019)

    MathSciNet  Google Scholar 

  47. Wang, R., Wang, B.: Random dynamics of \(p\)-Laplacian lattice systems driven by infinite-dimensional nonlinear noise. Stoch. Process. Appl. 130, 7431–7462 (2020)

    MathSciNet  Google Scholar 

  48. Wang, R., Wang, B.: Random dynamics of lattice wave equations driven by infinite-dimensional nonlinear noise. Discret. Contin. Dyn. Syst. Ser. B 25(7), 2461–2493 (2020)

    MathSciNet  Google Scholar 

  49. Wang, R., Guo, B., Wang, B.: Well-posedness and dynamics of fractional Fitz-Hugh-Nagumo systems on \({\mathbb{R} }^N\) driven by nonlinear noise. Sci. China Math. 64(11), 2395–2436 (2020)

    Google Scholar 

  50. Wang, R., Wang, B.: Global well-posedness and long-term behavior of discrete reaction-diffusion equations driven by superlinear noise. Stoch. Anal. Appl. 39(4), 667–696 (2021)

    MathSciNet  Google Scholar 

  51. Wang, R.: Long-time dynamics of stochastic lattice plate equations with nonlinear noise and damping. J. Dyn. Differ. Equ. 33(2), 767–803 (2021)

    MathSciNet  Google Scholar 

  52. Wang, R., Guo, B., Liu, W., Nguyen, D.T.: Fractal dimension of random invariant sets and regular random attractors for stochastic hydrodynamical equations. Mathematische Annalen (2023). https://doi.org/10.1007/s00208-023-02661-3

    Article  Google Scholar 

  53. Wang, R., Kinra, K., Mohan, M.T.: Asymptotically autonomous robustness in probability of random attractors for stochastic Navier-Stokes equations on unbounded Poincaré domains. SIAM J. Math. Anal. 55(4), 2644–2676 (2023)

    MathSciNet  Google Scholar 

  54. Xu, J., Zhang, Z., Caraballo, T.: Non-autonomous nonlocal partial differential equations with delay and memory. J. Differ. Equ. 270, 505–546 (2021)

    MathSciNet  Google Scholar 

  55. Xu, J., Zhang, Z., Caraballo, T.: Mild solutions to time fractional stochastic 2D-Stokes equations with bounded and unbounded delay. J. Dyn. Differ. Equ. 34, 583–603 (2022)

    MathSciNet  Google Scholar 

  56. Xu, J., Caraballo, T., Valero, J.: Asymptotic behavior of a semilinear problem in heat conduction with long time memory and non-local diffusion. J. Differ. Equ. 327, 418–447 (2022)

    MathSciNet  Google Scholar 

  57. You, Y.: Global attractor of the Gray-Scott equations. Commun. Pure Appl. Anal. 7, 947–970 (2008)

    MathSciNet  Google Scholar 

  58. You, Y.: Asymptotic dynamics of Selkov equations. Discret. Contin. Dyn. Syst. Ser. S 2, 193–219 (2009)

    Google Scholar 

  59. You, Y.: Dynamics of three-component reversible Gray-Scott model. Discret. Contin. Dyn. Syst. B 14, 1671–1688 (2010)

    MathSciNet  Google Scholar 

  60. Zhou, S.: Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise. J. Differ. Equ. 263, 2247–2279 (2017)

    MathSciNet  Google Scholar 

  61. Zinner, B.: Existence of traveling wavefront solutions for the discrete Nagumo equation. J. Differ. Equ. 96(1), 1–27 (1992)

    MathSciNet  Google Scholar 

  62. Zhao, C., Wang, J., Caraballo, T.: Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations. J. Differ. Equ. 317, 474–494 (2022)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Renhai Wang was supported by National Natural Science Foundation of China (No. 12301299), the research fund of Qianshixinmiao[2022]B16, Natural Science Research Project of Guizhou Provincial Department of Education (No. QJJ[2023]011), and the research fund of Qiankehepingtairencai-YSZ[2022]022.

Funding

Funding were provided by Qianshixinmiao (Grant No. [2022]B16), National Natural Science Foundation of China (Grant No. 12301299), Natural Science Research Project of Guizhou Provincial Department of Education (Grant No. QJJ[2023]011) and Qiankehepingtairencai (Grant No. YSZ[2022]022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renhai Wang.

Ethics declarations

Competing interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Wang, R. Global Well-Posedness, Mean Attractors and Invariant Measures of Generalized Reversible Gray–Scott Lattice Systems Driven by Nonlinear Noise. Appl Math Optim 89, 5 (2024). https://doi.org/10.1007/s00245-023-10073-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10073-7

Keywords

Navigation