Skip to main content
Log in

Flourescence sensors for heavy metal detection: major contaminants in soil and water bodies

  • Review
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Due to the increasing consumption of heavy metals, there is a rising need for specific and useful methods that are employed for the detection of heavy metals. Fluorescence sensing is a highly selective, rapid and biosensing technique that is employed in the determination of some heavy metals in any sample of soil or water, any other living person, the food being consumed or any other substance which are being used daily. These fluorescent methods are a type of analytical technique and they are mainly based on detection. Many types of metal conjugated molecules have been used of the detection of these heavy metals with various mechanisms. We have taken into account some specific sensor molecules as they were more suitable and easily accessible. These techniques that were employed in the detection of various heavy metals such as copper, lead and mercury have been discussed in the following review article.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z.L. He, X.E. Yang, P.J. Stoffella, Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 19(2–3), 125–140 (2005). https://doi.org/10.1016/j.jtemb.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  2. M. Gockenbach, A Primer on Differentiation. Optim. Eng. 2(1), 75–129 (2001). https://doi.org/10.1023/A:1011874904403

    Article  Google Scholar 

  3. S. Kamran et al., Heavy Metals Contamination and what are the Impacts on Living Organisms. Greener J. Environ. Manag. Public Saf. 2(4), 172–179 (2013). https://doi.org/10.15580/gjemps.2013.4.060413652

    Article  Google Scholar 

  4. G. Noida, 2019 Preprint not peer wed Prpeer,. 18: 5 doi: https://doi.org/10.19080/IJESNR.2019.18.555996.

  5. L. Järup, Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003). https://doi.org/10.1093/bmb/ldg032

    Article  PubMed  Google Scholar 

  6. F.A. Ababneh, I.F. Al-Momani, Assessments of toxic heavy metals contamination in cosmetic products. Environ. Forensics 19(2), 134–142 (2018). https://doi.org/10.1080/15275922.2018.1448908

    Article  CAS  Google Scholar 

  7. K.J. Wallace, Molecular dyes used for the detection of biological and environmental heavy metals: Highlights from 2004 to 2008. Supramol. Chem. 21(1–2), 89–102 (2009). https://doi.org/10.1080/10610270802516633

    Article  CAS  Google Scholar 

  8. Y. Xiao, B.D. Piorek, K.W. Plaxco, A.J. Heegert, A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J. Am. Chem. Soc. 127(51), 17990–17991 (2005). https://doi.org/10.1021/ja056555h

    Article  CAS  PubMed  Google Scholar 

  9. A.H. Li, M. Costa, Selected molecular mechanisms of metal toxicity and carcinogenicity. Handb. Toxicol. Met. 1, 253–278 (2021). https://doi.org/10.1016/B978-0-12-823292-7.00008-5

    Article  Google Scholar 

  10. B. Dheeba, P. Sampathkumar, Evaluation of heavy metal contamination in surface soil around industrial area, Tamil Nadu, India. Int. J. ChemTech Res. 4(3), 1229–1240 (2012)

    CAS  Google Scholar 

  11. S.S. Amarnath Mishra, Heavy metal toxicity: a blind evil”. J. Forensic Res. 05, 7145 (2014). https://doi.org/10.4172/2157-7145.1000e116

    Article  Google Scholar 

  12. J. Singh et al., Highly fluorescent carbon dots derived from Mangifera indica leaves for selective detection of metal ions. Sci. Total Environ. 720, 137604 (2020). https://doi.org/10.1016/j.scitotenv.2020.137604

    Article  CAS  PubMed  Google Scholar 

  13. C. Feng et al., Fluorescent electronic tongue based on soluble conjugated polymeric nanoparticles for the discrimination of heavy metal ions in aqueous solution. Polym. Chem. 10(18), 2256–2262 (2019). https://doi.org/10.1039/c9py00033j

    Article  CAS  Google Scholar 

  14. M. Lambert and B. a Leven, 2000 New Methods of Cleaning Up Heavy Metal in Soils and Water Innovative Solutions to an Environmental Problem. Environ. Sci. Technol. Briefs Citizens. 1–3 2000, Available: http://www.engg.ksu.edu/HSRC/Tosc/metals.pdf.

  15. M. Jaishankar, B.B. Mathew, M.S. Shah, K.R.S. Gowda, Biosorption of Few Heavy Metal Ions Using Agricultural Wastes”. J. Environ. Pollut. Hum. Heal. 2, 1–6 (2014). https://doi.org/10.12691/jephh-2-1-1

    Article  Google Scholar 

  16. C.M.L. Carvalho, E.H. Chew, S.I. Hashemy, J. Lu, A. Holmgren, Inhibition of the human thioredoxin system: a molecular mechanism of mercury toxicity. J. Biol. Chem. 283(18), 11913–11923 (2008). https://doi.org/10.1074/jbc.M710133200

    Article  CAS  PubMed  Google Scholar 

  17. A. Ulrich, C. Moor, H. Vonmont, H.R. Jordi, M. Lory, ICP-MS trace-element analysis as a forensic tool. Anal. Bioanal. Chem. 378(4), 1059–1068 (2004). https://doi.org/10.1007/s00216-003-2434-8

    Article  CAS  PubMed  Google Scholar 

  18. Y. Zhou, Z. Xu, J. Yoon, Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH: Highlighted research during 2004–2010. Chem. Soc. Rev. 40(5), 2222–2235 (2011). https://doi.org/10.1039/c0cs00169d

    Article  CAS  PubMed  Google Scholar 

  19. D.T. Quang, J.S. Kim, Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem. Rev. 110(10), 6280–6301 (2010). https://doi.org/10.1021/cr100154p

    Article  CAS  Google Scholar 

  20. J.F. Zhang, Y. Zhou, J. Yoon, J.S. Kim, Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem. Soc. Rev. 40(7), 3416–3429 (2011). https://doi.org/10.1039/c1cs15028f

    Article  CAS  PubMed  Google Scholar 

  21. A. Brzechwa-Chodzyńska, W. Drożdż, J. Harrowfield, A.R. Stefankiewicz, Fluorescent sensors: a bright future for cages. Coord. Chem. Rev. (2021). https://doi.org/10.1016/j.ccr.2021.213820

    Article  Google Scholar 

  22. Z. Xu, J. Yoon, D.R. Spring, Fluorescent chemosensors for Zn2+. Chem. Soc. Rev. 39(6), 1996–2006 (2010). https://doi.org/10.1039/b916287a

    Article  CAS  PubMed  Google Scholar 

  23. S. Shallari, C. Schwartza, A. Haskob, J.L. Morelat, Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ. 209, 133–142 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. J. Lian, Q. Xu, Y. Wang, F. Meng, Recent developments in fluorescent materials for heavy metal ions analysis from the perspective of forensic chemistry. Front. Chem. 8, 1–8 (2020). https://doi.org/10.3389/fchem.2020.593291

    Article  CAS  Google Scholar 

  25. G. Niu et al., AIE luminogens as fluorescent bioprobes. TrAC Trends Anal. Chem. 123, 115769 (2020). https://doi.org/10.1016/j.trac.2019.115769

    Article  CAS  Google Scholar 

  26. G. Sivaraman et al., Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord. Chem. Rev. 357, 50–104 (2018). https://doi.org/10.1016/j.ccr.2017.11.020

    Article  CAS  Google Scholar 

  27. M. Jaishankar, T. Tseten, N. Anbalagan, B.B. Mathew, K.N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7(2), 60–72 (2014). https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. C.-W. Chen, C.-F. Chen, C.-D. Dong, Distribution and accumulation of mercury in sediments of kaohsiung river mouth, Taiwan. APCBEE Proc. 1, 153–158 (2012). https://doi.org/10.1016/j.apcbee.2012.03.025

    Article  CAS  Google Scholar 

  29. S.J. Toal, W.C. Trogler, Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem. 16(28), 2871–2883 (2006). https://doi.org/10.1039/b517953j

    Article  CAS  Google Scholar 

  30. N. Basu, M. Kwan, H. Man Chan, Mercury but not organochlorines inhibits muscarinic cholinergic receptor binding in the cerebrum of ringed seals (Phoca hispida ). J Toxicol. Environ. Heal. Part A Curr. Issues. 69, 1133–1143 (2006). https://doi.org/10.1080/15287390500362394

    Article  CAS  Google Scholar 

  31. K.M. Pollard, D.M. Cauvi, C.B. Toomey, P. Hultman, D.H. Kono, Mercury-induced inflammation and autoimmunity. Biochim Biophys Acta Gen Subj (2019). https://doi.org/10.1016/j.bbagen.2019.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  32. J.D. Winkler, C.M. Bowen, V. Michelet, Photodynamic fluorescent metal ion sensors with parts per billion sensitivity. J. Am. Chem. Soc. 120(13), 3237–3242 (1998). https://doi.org/10.1021/ja974181p

    Article  CAS  Google Scholar 

  33. B.-C. Ye, B.-C. Yin, Highly sensitive detection of mercury(II) Ions by fluorescence polarization enhanced by gold nanoparticles. Angew. Chemie 120(44), 8514–8517 (2008). https://doi.org/10.1002/ange.200803069

    Article  Google Scholar 

  34. L. Liu, G. Zhang, J. Xiang, D. Zhang, D. Zhu, Fluorescence ‘turn on’ chemosensors for Ag+ and Hg2+ based on tetraphenylethylene motif featuring adenine and thymine moieties. Org. Lett. 10(20), 4581–4584 (2008). https://doi.org/10.1021/ol801855s

    Article  CAS  PubMed  Google Scholar 

  35. Y.F. Cheng et al., Azo 8-hydroxyquinoline benzoate as selective chromogenic chemosensor for Hg2+ and Cu2+. Tetrahedron Lett. 47(36), 6413–6416 (2006). https://doi.org/10.1016/j.tetlet.2006.06.125

    Article  CAS  Google Scholar 

  36. Y. Tang et al., A reversible and highly selective fluorescent sensor for mercury(II) using poly(thiophene)s that contain thymine moietiesa. Macromol. Rapid Commun. 27(6), 389–392 (2006). https://doi.org/10.1002/marc.200500837

    Article  CAS  Google Scholar 

  37. I.B. Kim, U.H.F. Bunz, Modulating the sensory response of a conjugated polymer by proteins: an agglutination assay for mercury ions in water. J. Am. Chem. Soc. 128(9), 2818–2819 (2006). https://doi.org/10.1021/ja058431a

    Article  CAS  PubMed  Google Scholar 

  38. B.R. Baker, R.Y. Lai, M.S. Wood, E.H. Doctor, A.J. Heeger, K.W. Plaxco, An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J. Am. Chem. Soc. 128(10), 3138–3139 (2006). https://doi.org/10.1021/ja056957p

    Article  CAS  PubMed  Google Scholar 

  39. Y. Xiao, A.A. Lubin, A.J. Heeger, K.W. Plaxco, Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chemie 117(34), 5592–5595 (2005). https://doi.org/10.1002/ange.200500989

    Article  Google Scholar 

  40. N. De Acha, C. Elosúa, J.M. Corres, F.J. Arregui, Fluorescent sensors for the detection of heavy metal ions in aqueous media. Sensors (Switzerland). 19, 3 (2019). https://doi.org/10.3390/s19030599

    Article  CAS  Google Scholar 

  41. Y. Miyake et al., MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J. Am. Chem. Soc. 128(7), 2172–2173 (2006). https://doi.org/10.1021/ja056354d

    Article  CAS  PubMed  Google Scholar 

  42. C.H. Chung, J.H. Kim, J. Jung, B.H. Chung, Nuclease-resistant DNA aptamer on gold nanoparticles for the simultaneous detection of Pb2+ and Hg2+ in human serum. Biosens. Bioelectron. 41(1), 827–832 (2013). https://doi.org/10.1016/j.bios.2012.10.026

    Article  CAS  PubMed  Google Scholar 

  43. L. Guo, N. Yin, G. Chen, Photoinduced electron transfer mediated by π-stacked thymine-Hg 2+-thymine base pairs. J. Phys. Chem. C 115(11), 4837–4842 (2011). https://doi.org/10.1021/jp1083482

    Article  CAS  Google Scholar 

  44. C.W. Liu, C.C. Huang, H.T. Chang, Highly selective DNA-based sensor for lead(II) and mercury(II) ions. Anal. Chem. 81(6), 2383–2387 (2009). https://doi.org/10.1021/ac8022185

    Article  CAS  PubMed  Google Scholar 

  45. Y. Wang, L. Bao, Z. Liu, D.W. Pang, Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal. Chem. 83(21), 8130–8137 (2011). https://doi.org/10.1021/ac201631b

    Article  CAS  PubMed  Google Scholar 

  46. A. Ono, Development of novel oligonucleotide-based sensors which are highly Hg(II) selective and are insensitive to other heavy metal ions. Nucleic Acids Symp. Ser. (Oxf) 48, 29–30 (2004). https://doi.org/10.1093/nass/48.1.29

    Article  Google Scholar 

  47. X. Zeng, F.S. Zhang, B. Zhu, L. Zhu, Fluorescence determination of merucury(II) using a thymine aptamer. Anal. Lett. 48(14), 2208–2216 (2015). https://doi.org/10.1080/00032719.2015.1020430

    Article  CAS  Google Scholar 

  48. S.Q. Wang et al., Synthesis, X-ray crystal structure and optical properties of novel 1,3,5-triarylpyrazoline derivatives and the fluorescent sensor for Cu 2+. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 106, 110–117 (2013). https://doi.org/10.1016/j.saa.2012.12.062

    Article  CAS  Google Scholar 

  49. D.W. Domaille, L. Zeng, C.J. Chang, Visualizing ascorbate-triggered release of labile copper within living cells using a ratiometric fluorescent sensor. J. Am. Chem. Soc. 132(4), 1194–1195 (2010). https://doi.org/10.1021/ja907778b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. N. Herawati, S. Suzuki, K. Hayashi, I.F. Rivai, H. Koyama, Cadmium copper, and zinc levels in rice and soil of Japan, Indonesia. China Soil Type. 11, 33–39 (2000)

    Google Scholar 

  51. Z.Q. Guo, W.Q. Chen, X.M. Duan, Highly selective visual detection of Cu(II) utilizing intramolecular hydrogen bond-stabilized merocyanine in aqueous buffer solution. Org. Lett. 12(10), 2202–2205 (2010). https://doi.org/10.1021/ol100381g

    Article  CAS  PubMed  Google Scholar 

  52. L. Zeng, E. W. Miller, A. Pralle, E. Y. Isacoff, and C. J. Chang, “A Selective Turn-On Fluorescent Sensor for Imaging Copper in Living Cells Li Zeng, † Evan W. Miller, † Arnd Pralle, ‡ Ehud Y. Isacoff, ‡ and Christopher J. Chang*, †, ”. J. Am. Chem. Soc., vol. 60, no. 100 mL, pp. 4–8, 2006, [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1414792&tool=pmcentrez&rendertype=abstract.

  53. J.S. Park, S. Jeong, S. Dho, M. Lee, C. Song, Colorimetric sensing of Cu2+ using a cyclodextrin-dye rotaxane. Dye. Pigment. 87(1), 49–54 (2010). https://doi.org/10.1016/j.dyepig.2010.02.003

    Article  CAS  Google Scholar 

  54. L. Shen, Y. He, X. Yang, W. Ma, The synthesis and mercury-recognizing skill of two emission ‘turn-on’ rhodamine derivatives excited by rare earth up-conversion lattice. Spectrochim. Acta - Part A Mol Biomol. Spectrosc. 135, 172–179 (2015). https://doi.org/10.1016/j.saa.2014.07.007

    Article  CAS  Google Scholar 

  55. Y. Zhang et al., Light-Emitting conjugated organic polymer as an efficient fluorescent probe for Cu2+ ions detection and cell imaging. Macromol. Rapid Commun. 42(19), 2–7 (2021). https://doi.org/10.1002/marc.202100469

    Article  CAS  Google Scholar 

  56. Z. Li, Y. Zhang, H. Xia, Y. Mu, X. Liu, A robust and luminescent covalent organic framework as a highly sensitive and selective sensor for the detection of Cu2+ ions. Chem. Commun. 52(39), 6613–6616 (2016). https://doi.org/10.1039/c6cc01476c

    Article  CAS  Google Scholar 

  57. P. Jagadesan, G. Eder, P.L. McGrier, The excited-state intramolecular proton transfer properties of three imine-linked two-dimensional porous organic polymers. J. Mater. Chem. C 5(23), 5676–5679 (2017). https://doi.org/10.1039/c7tc00123a

    Article  CAS  Google Scholar 

  58. Z. Li et al., Editing light emission with stable crystalline covalent organic frameworks via wall surface perturbation. Angew. Chemie - Int. Ed. 60(35), 19419–19427 (2021). https://doi.org/10.1002/anie.202107179

    Article  CAS  Google Scholar 

  59. U. Reddy, H. Agarwalla, N. Taye, S. Ghorai, S. Chattopadhyay, A. Das, A novel fluorescence probe for estimation of cysteine/histidine in human blood plasma and recognition of endogenous cysteine in live Hct116 cells. Chem. Commun. 50(69), 9899–9902 (2014). https://doi.org/10.1039/c4cc04214j

    Article  Google Scholar 

  60. M.H. Lim, B.A. Wong, W.H. Pitcock, D. Mokshagundam, M.H. Baik, S.J. Lippard, Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes. J. Am. Chem. Soc. 128(44), 14364–14373 (2006). https://doi.org/10.1021/ja064955e

    Article  CAS  PubMed  Google Scholar 

  61. W. Hao, A. McBride, S. McBride, J.P. Gao, Z.Y. Wang, Colorimetric and near-infrared fluorescence turn-on molecular probe for direct and highly selective detection of cysteine in human plasma. J. Mater. Chem. 21(4), 1040–1048 (2011). https://doi.org/10.1039/c0jm02497j

    Article  CAS  Google Scholar 

  62. X. Yuan, Y. Tay, X. Dou, Z. Luo, D.T. Leong, J. Xie, Glutathione-protected silver nanoclusters as cysteine-selective fluorometric and colorimetric probe. Anal. Chem. 85(3), 1913–1919 (2013). https://doi.org/10.1021/ac3033678

    Article  CAS  PubMed  Google Scholar 

  63. P.M. Kovach, M.E. Meyerhoff, Development and Application of a Histidine-Selective Biomembrane Electrode. Anal. Chem. 54(2), 217–220 (1982). https://doi.org/10.1021/ac00239a016

    Article  CAS  PubMed  Google Scholar 

  64. B. Liu, J. Wang, G. Zhang, R. Bai, Y. Pang, Flavone-based ESIPT ratiometric chemodosimeter for detection of cysteine in living cells. ACS Appl. Mater. Interfaces 6(6), 4402–4407 (2014). https://doi.org/10.1021/am500102s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. P. Das, A.K. Mandal, U. Reddy, G.M. Baidya, S.K. Ghosh, A. Das, Designing a thiol specific fluorescent probe for possible use as a reagent for intracellular detection and estimation in blood serum: Kinetic analysis to probe the role of intramolecular hydrogen bonding. Org. Biomol. Chem. 11, 6604–6614 (2013). https://doi.org/10.1039/c3ob41284a

    Article  CAS  PubMed  Google Scholar 

  66. A. Rigo, A. Corazza, M. Luisa Di Paolo, M. Rossetto, R. Ugolini, M. Scarpa, Interaction of copper with cysteine: Stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation. J. Inorg. Biochem. 98(9), 1495–1501 (2004). https://doi.org/10.1016/j.jinorgbio.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  67. S. Shahrokhian, Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal. Chem. 73(24), 5972–5978 (2001). https://doi.org/10.1021/ac010541m

    Article  CAS  PubMed  Google Scholar 

  68. A.R. Flegal, D.R. Smith, Current needs for increased accuracy and precision in measurements of low levels of lead in blood. Environ. Res. 58(1–2), 125–133 (1992). https://doi.org/10.1016/S0013-9351(05)80209-9

    Article  CAS  PubMed  Google Scholar 

  69. A.M. Liu, K. Hidajat, S. Kawi, D.Y. Zhao, A new class of hybrid mesaporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chem. Commun. 15(13), 1145–1146 (2000). https://doi.org/10.1039/b002661l

    Article  Google Scholar 

  70. H. Na Kim, W. Xiu Ren, J. Seung Kim, J. Yoon, Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions”. Chem. Soc. Rev. 41, 3210–3244 (2012). https://doi.org/10.1039/c1cs15245a

    Article  CAS  Google Scholar 

  71. Z. Li, Z. Zhu, Y. Chen, C.G. Hsu, J. Pan, Spectrophotometric determination of lead in biological samples with dibromo-p-methyl-methylsulfonazo”. Talanta 48, 511–516 (1999). https://doi.org/10.1016/S0039-9140(98)00247-1

    Article  CAS  PubMed  Google Scholar 

  72. G. Fang, Y. Liu, S. Meng, and Y. Guo, 2002 Spectrophotometric determination of lead in vegetables with. 57: 1155–1160.

  73. W.S. Xia, R.H. Schmehl, C.J. Li, J.T. Mague, C.P. Luo, D.M. Guldi, Chemosensors for lead(II) and alkali metal ions based on self-assembling fluorescence enhancement (SAFE). J. Phys. Chem. B 106(4), 833–843 (2002). https://doi.org/10.1021/jp013274x

    Article  CAS  Google Scholar 

  74. M.R. Awual, T. Yaita, S.A. El-Safty, H. Shiwaku, S. Suzuki, Y. Okamoto, Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem. Eng. J. 221, 322–330 (2013). https://doi.org/10.1016/j.cej.2013.02.016

    Article  CAS  Google Scholar 

  75. A. Shahat, H.M.A. Hassan, H.M.E. Azzazy, E.A. El-Sharkawy, H.M. Abdou, M.R. Awual, Novel hierarchical composite adsorbent for selective lead(II) ions capturing from wastewater samples. Chem. Eng. J. 332, 377–386 (2018). https://doi.org/10.1016/j.cej.2017.09.040

    Article  CAS  Google Scholar 

  76. L. Mercier, T.J. Pinnavaia, Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: Factors affecting Hg(II) uptake. Environ. Sci. Technol. 32(18), 2749–2754 (1998). https://doi.org/10.1021/es970622t

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kumar.

Ethics declarations

Conflict of interest

I hereby declare that the study entitled ‘Organic molecules for detection of heavy metals’ is being submitted by me and is my original work. It has not been published or submitted by any degree, diploma. This has been undertaken for the fulfilment of “Post graduate masters in chemistry” at Chandigarh University, Mohali, Punjab (India) by Mallika Singh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Kumar, J. Flourescence sensors for heavy metal detection: major contaminants in soil and water bodies. ANAL. SCI. 39, 1829–1838 (2023). https://doi.org/10.1007/s44211-023-00392-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00392-8

Keywords

Navigation