Skip to main content
Log in

Trigger-activated autonomous DNA machine for amplified liver cancer biomarker microRNA21 imaging

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

MicroRNA-21 (miRNA-21) is a kind of RNA that exists in biological fluids such as blood, urine and saliva. It has over expression in liver cancer and has different expression in different stages of cancer. However, due to the characteristics of small base number, short length, low abundance and easy degradation of miRNA-21, the detection of miRNA-21 is a challenging subject. Visualization, sensitive, specific and stable detection of tumor suppressor or oncogene microRNAs (miRNAs) remains challenging and is highly significant for clinical diagnostics. To solve this problem, we have developed a target-triggered hybridization assembly DNA machine for intracellular miRNA imaging based on strand displacement amplification (SDA) and branched hybridization chain reaction (B-HCR). In this approach, the target miRNA could hybridize with the template probe to trigger the SDA, resulting in the formation of nicked fragments (NFs) that hybridized with hairpin probe1 (HP1). The opened HP1 could hybridize with hairpin probe2 (HP2), leading to the self-assembly of hyperbranched DNA nanostructures through B-HCR. As expected, the newly developed method exhibits a detection limit down to 11.3 pM miRNA-21 and achieves high selectivity toward miRNA-21 against other interfering miRNAs. Due to its superior sensitivity and selectivity, our method can be further used to detect miRNA-21 in human serum samples. By taking advantage of intelligent design, the proposed method was also used for image miRNA-21 expression levels in different cell lines. This method shows a broad application in clinical diagnosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Ambros, The functions of animal microRNAs. Nature 431(7006), 350 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. H. Dong, J. Lei, L. Ding, Y. Wen, H. Ju, X. Zhang, MicroRNA: function, detection, and bioanalysis. Chem. Rev. 113(8), 6207–6233 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. D.G. Spiller, C.D. Wood, D.A. Rand, M.R. White, Measurement of single-cell dynamics. Nature 465(7299), 736 (2010)

    Article  CAS  PubMed  Google Scholar 

  4. C.M. Croce, Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 10(10), 704–714 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. W. Roa, B. Brunet, L. Guo, J. Amanie, A. Fairchild, Z. Gabos, T. Nijjar, R. Scrimger, D. Yee, J. Xing, Identification of a new microRNA expression profile as a potential cancer screening tool. Clin. Investig. Med. 33, 124–132 (2010)

    Article  Google Scholar 

  6. Y. Tu, W. Li, P. Wu, H. Zhang, C. Cai, Fluorescence quenching of graphene oxide integrating with the site-specific cleavage of the endonuclease for sensitive and selective microRNA detection. Anal. Chem. 85(4), 2536–2542 (2013)

    Article  CAS  PubMed  Google Scholar 

  7. E. Várallyay, J. Burgyán, Z. Havelda, MicroRNA detection by northern blotting using locked nucleic acid probes. Nat. Protoc. 3(2), 190 (2008)

    Article  PubMed  Google Scholar 

  8. R. Deng, L. Tang, Q. Tian, Y. Wang, L. Lin, J. Li, Toehold-initiated rolling circle amplification for visualizing individual microRNAs in situ in single cells. Angew. Chem. Int. Ed. 53(9), 2389–2393 (2014)

    Article  CAS  Google Scholar 

  9. R. Duan, X. Zuo, S. Wang, X. Quan, D. Chen, Z. Chen, L. Jiang, C. Fan, F. Xia, Lab in a tube: ultrasensitive detection of microRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification. J. Am. Chem. Soc. 135(12), 4604–4607 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. H. Dong, J. Lei, H. Ju, F. Zhi, H. Wang, W. Guo, Z. Zhu, F. Yan, Target-cell-specific delivery, imaging, and detection of intracellular microRNA with a multifunctional SnO2 nanoprobe. Angew. Chem. Int. Ed. 51(19), 4607–4612 (2012)

    Article  CAS  Google Scholar 

  11. H. Peng, A.M. Newbigging, M.S. Reid et al., Signal amplification in living cells: a review of microRNA detection and imaging. Anal. Chem. 92(1), 292–308 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. G. Yang, T. Song, M. Wang et al., Recent advancements in nanosystem-based molecular beacons for RNA detection and imaging. CS Appl. Nano Mater 3, 3065–3086 (2022)

    Article  Google Scholar 

  13. L. Mo, D. Liang, M. Mo, C. Yang, W. Lin, Dual-detection of miRNAs in living cells via hybridization chain reaction onDNA tetrahedron. Sensors and Actuators: B. Chemical. 375(1), 132955–132963 (2023)

    Article  CAS  Google Scholar 

  14. D. Zhu, J. Huang, B. Lu et al., Intracellular microRNA imaging with MoS2-supported nonenzymatic catassembly of DNA hairpins. ACS Appl. Mater. Interfaces 11(23), 20725–20733 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. C. Li, J. Zhang, Y. Gao, S. Luo, Z.S. Wu, Nonenzymatic autonomous assembly of cross-linked network structures from only two palindromic DNA components for intracellular fluorescence imaging of miRNAs. ACS Sens. 7(2), 601–611 (2022)

    Article  CAS  PubMed  Google Scholar 

  16. H. Zhou, Y. Jiang, W. Zhao, S. Zhang, Light-activated nanodevice for on-demand imaging of miRNA in living cells via logic assembly. ACS Appl. Mater. Interfaces 14(11), 13070–13078 (2022)

    Article  CAS  PubMed  Google Scholar 

  17. H. Liu, C. Ma, S. Ge, M. Yan, J. Yu, Imaging of microRNA with enzyme-free signal amplification of catalyzed hairpin assembly in living cells. Nanomed. Nanotechnol. Biol. Med. 12(2), 512 (2016)

    Article  Google Scholar 

  18. S.J. Zhen, X. Xiao, C.H. Li, C.Z. Huang, An enzyme-free DNA circuit-assisted graphene oxide enhanced fluorescence anisotropy assay for microRNA detection with improved sensitivity and selectivity. Anal. Chem. 89(17), 8766–8771 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. T. Tian, H. Xiao, Z. Zhang, Y. Long, S. Peng, S. Wang, X. Zhou, S. Liu, X. Zhou, Sensitive and convenient detection of microRNAs based on cascade amplification by catalytic DNAzymes. Chem. A Eur. J. 19(1), 92–95 (2013)

    Article  CAS  Google Scholar 

  20. Z. Zhou, Y.S. Sohn, R. Nechushtai, I. Willner, ACS Nano 14, 9021–9031 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. F. Yang, Y. Cheng, Y. Zhang, W. Wei, H. Dong, H. Lu, X. Zhang, Anal. Chem. 92, 4411–4418 (2020)

    Article  CAS  PubMed  Google Scholar 

  22. J. Wang, Y. Gao, P. Liu, S. Xu, X. Luo, Anal. Chem. 92, 15169–15178 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. J. Su, F. Wu, H. Xia, Y. Wu, S. Liu, Chem. Sci. 11, 80–86 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Medical and health science and technology project of Xiamen (3502Z20209179, 3502Z20194059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huidi Yan or Lixin Zhou.

Ethics declarations

Conflict of interest

The authors have declared that no competing interest exists.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 34702 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Wang, M., Lin, P. et al. Trigger-activated autonomous DNA machine for amplified liver cancer biomarker microRNA21 imaging. ANAL. SCI. 39, 1661–1667 (2023). https://doi.org/10.1007/s44211-023-00397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00397-3

Keywords

Navigation