Skip to main content
Log in

Variations and Inter Relationship in Mid-tropospheric Carbon Dioxide, Temperature and Water Vapour Using AIRS Observations

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

In the present study, trends and variations in carbon dioxide (CO2), temperature and water vapour are analysed using 9 years (2003–2011) of mid-tropospheric (300–500 hPa) Atmospheric Infrared Sounder (AIRS) data. The focus of analysis remains on both a global as well as regional (India) scale along with improved understanding of their inter relationship. It was observed that the mid-tropospheric carbon dioxide increased from ~ 373 to ~ 393 ppm and ~ 373 to ~ 392 ppm, respectively, over the globe and the Indian region during 9 years. However, no substantial trends (increasing or decreasing) were observed in the temperature and water vapour observations for the same period of time. De-trended data of CO2, temperature and water vapour were further analysed to understand the inter relationship between these parameters and the influence of two greenhouse gases (CO2 and water vapour) on temperature. Analysis suggests a very high correlation (~ 0.90) between temperature and water vapour, however, no significant correlation was observed between temperature and carbon dioxide data, indicating that change in water vapour may have stronger influence on temperature compared to the change in CO2, this feature can play a more significant role as a greenhouse gas than CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.P. Jones and S.D. Smith, A first measurement of sea–air CO2 flux by eddy correlation. J. Geophys. Res., 82 (1977) 5990–5992.

    Article  ADS  Google Scholar 

  2. E.P. Jones, T.V. Ward and H.H. Zwick, A fast response atmospheric CO2, sensor for eddy correlation flux measurements. Atmos. Environ., 12 (1978) 845–851.

    Article  ADS  Google Scholar 

  3. R. Leuning, D.T. Denmead, A.R.G. Lang and E. Ohtaki, Effects of heat and water vapour transport on eddy covariance measurement of CO2 fluxes. Bound. Layer Meteorol., 23 (1982) 209–222.

    Article  ADS  Google Scholar 

  4. E. Ohtaki and M. Matsui, Infra-Red Device for simultaneous measurements of atmospheric CO2 and water vapour. Bound. Layer Meteorol., 24 (1982) 109–119.

    Article  ADS  Google Scholar 

  5. E. Ohtaki, On the similarity in atmospheric fluctuations of CO2, water vapour and temperature over vegetated fields. Bound. Layer Meteorol., 32 (1985) 25–37.

    Article  ADS  Google Scholar 

  6. H. Gitay, A. Suarez, R.T. Watson and D.J. Dokken, Climate Change and Bio diversity. Intergovernmental Panel on Climate Change (IPCC), Technical Paper V, (2002) pp. 1–86.

  7. S. Solomon, D. Qin, M. Manning, M. Marquis, K. Averyt, M.M.B. Tignor, H.L. Miller and Z. Chen, Climate Change 2007 the Physical Science Basis, Intergovernmental Panel On Climate Change (IPCC) (2007) pp. 1–10. Cambridge University Press, Cambridge (UK).

  8. T. Dharmraj, M.N. Patil, R.T. Waghmare and P.E. Raj, Carbon dioxide and water vapour characteristics on the west coast of Arabian sea during Indian summer monsoon. J. Earth Syst. Sci., 121 (2012) 903–910.

    Article  ADS  Google Scholar 

  9. W.G. Egan, A.W. Hogan and H. Zhu, Physical variation of water vapour and the relation with carbon dioxide. Geophys. Res. Lett., 18(12) (1991) 2245–2248.

    Article  ADS  Google Scholar 

  10. P.C. Soares, Warming power of CO2 and H2O: correlations with temperature changes. Int. J. Geosci., 1 (2010) 102–112. https://doi.org/10.4236/ijg.2010.13014.

    Article  Google Scholar 

  11. J.H. Jiang, B. Wang, K. Goya, K. Hocke, S.D. Eckermann, J. Ma, D.L. Wu and W.G. Read, Geographical distribution and inter-seasonal variability of tropical deep convection: UARS MLS observations and analyses. J. Geophys. Res., 109 (2008) D03111. https://doi.org/10.1029/2003JD003756.

    Article  ADS  Google Scholar 

  12. M. Chahine, C. Barnet, E.T. Olsen, L. Chen and E. Maddy, On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2. Geophys. Res. Lett., 32 (2005) L22803. https://doi.org/10.1029/2005GL024165.

    Article  ADS  Google Scholar 

  13. M.T. Chahine, T. Pagano, H.H. Aumann, R. Atlas, C. Barnet, J. Blaisdell, L. Chen, M.G. Divakarla, E.J. Fetzer, M. Goldberg, C. Gautier and S. Granger, AIRS: improving weather forecasting and providing new data on greenhouse gases. Bull. Amer. Meteor. Soc., 87 (2006) 911–926.

    Article  ADS  Google Scholar 

  14. M.T. Chahine, L. Chen, P. Dimotakis, X. Jiang, Q. Li, E.T. Olsen, T. Pagano, J. Randerson and Y.L. Yung, Satellite remote sounding of mid-tropospheric CO2. Geophys. Res. Lett., 35 (2008) L17807. https://doi.org/10.1029/2008GL035022.

    Article  ADS  Google Scholar 

  15. X. Jiang, M.T. Chahine, E.T. Olsen, L.L. Chen and Y.L. Yung, Inter-annual variability of mid-tropospheric CO2 from atmosphere infrared sounder. Geophys. Res. Lett., 37 (2010) L13801. https://doi.org/10.1029/2010GL042823.

    Article  ADS  Google Scholar 

  16. A. Gupta, S.K. Dhaka, V. Panwar, R. Bhatnagar, V. Kumar and S.K. Dash, AIRS satellite observations of seasonal variability in meridional temperature gradient over Indian region at 100 hPa. J. Earth Syst. Sci., 122(1) (2013) 201–213.

    Article  ADS  Google Scholar 

  17. A. Gupta, S.K. Dhaka, V. Panwar, R. Bhatnagar and V. Kumar, Long term temperature variability in the upper troposphere and lower stratosphere over Indian and Indonesian region using AIRS observations. Indian J. Radio Space Phys., 42 (2013) 298–308.

    Google Scholar 

  18. A. Gupta, S.K. Dhaka, Y. Matsumi, R. Imasu, S. Hayashida and V. Singh, Seasonal and annual variation of AIRS retrieved CO2 over India during 2003–2011. J. Earth Syst. Sci., 128(92) (2019) 1–12.

    Google Scholar 

  19. H.H. Aumann, M.T. Chahine, C. Gautier, M.D. Goldberg, E. Kalnay, L.M. McMillin, H. Revercomb, P.W. Rosenkranz, W.L. Smith and D.H. Staelin, AIRS /AMSU /HSB on the aqua mission: design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41 (2003) 253–264. https://doi.org/10.1109/tgrs.2002.808356.

    Article  ADS  Google Scholar 

  20. B.H. Lambrigtsen, Calibration of the AIRS microwave instruments. IEEE Trans. Geosci. Remote Sens., 41(2) (2003) 369–378. https://doi.org/10.1109/tgrs.2002.808247.

    Article  ADS  Google Scholar 

  21. R.J. Engelen, S. Serrar and F. Chevallier, Four dimensional data assimilation of atmospheric CO2 using AIRS observations. J. Geophys. Res., 114 (2009) D03303. https://doi.org/10.1029/2008JD010739.

    Article  ADS  Google Scholar 

  22. J. Susskind, C.D. Barnet and J. Blaisdell, Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens., 41 (2003) 390–409.

    Article  ADS  Google Scholar 

  23. J. Susskind, C.D. Barnet, J. Blaisdell, L. Iredell, F. Keita, L. Kouvaris, G. Molnar and M.T. Chahine, Accuracy of geophysical parameters derived from atmospheric infrared sounder/advanced microwave sounding unit as a function of fractional cloud cover. J. Geophys. Res., 111(D9) (2009) D09S17. https://doi.org/10.1029/2005jd006272.

    Article  Google Scholar 

  24. D.C. Tobin, H.E. Revercomb, R.O. Knuteson, B.M. Lesht, L.L. Strow, S.E. Hannon, W.F. Feltz, L.A. Moy, E.J. Fetzer and T.S. Cress, Atmospheric radiation measurement site atmospheric state best estimates for AIRS temperature and water vapour retrieval validation. J. Geophys. Res., 111 (2006) D09S14. https://doi.org/10.1029/2005JD006103.

    Article  ADS  Google Scholar 

  25. M.G. Divakarla, C.D. Barnet, M.D. Goldberg, L.M. McMillin, E. Maddy, W. Wolf, L. Zhou and X. Liu, Validation of Atmospheric Infrared Sounder temperature and water vapour retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res., 111 (2006) D09S15. https://doi.org/10.1029/2005JD006116.

    Article  ADS  Google Scholar 

  26. E.J. Fetzer, Preface to special section: validation of atmospheric infrared sounder observations. J. Geophys. Res., 111 (2006) D09S01. https://doi.org/10.1029/2005JD007020.

    Article  ADS  Google Scholar 

  27. W. Gao, F. Zhao and C. Gai, Validation of AIRS retrieval temperature and moisture products and their application in numerical models. Acta Metorol. Sin., 64 (2006) 271–280.

    Google Scholar 

  28. T.P. Yunck, E.J. Fetzer, A.M. Mannucci, C.O. Ao, F.W. Irion, B.D. Wilson and G.J.M. Manipon, Use of radio occultation to evaluate atmospheric temperature data from spaceborne infrared sensors. Terr. Atmos. Ocean. Sci., 20 (2009) 71–85. https://doi.org/10.3319/TAO.2007.12.08.01.

    Article  Google Scholar 

  29. X.Y. Zhang, B.W. Guang and Z. Peng, Temporal and spatial distribution of tropospheric CO2 over China based on satellite observations during 2003–2010. Proceedings/2011/ISRSE-34/211104015, 34(2011) 41–45.

  30. R.K. Nayak, V.K. Dadhwal, A. Majumdar, N.R. Patel and C.B.S. Dutt, Variability of atmospheric CO2 over India and surrounding oceans and control by surface fluxes. International Archives of the Photogrammetry; Remote Sensing and Spatial Information Sciences, Volume XXXVIII-8/W20 (2011).

  31. B. Preethi, J.V. Revadekar and R.H. Kriplani, Anomalous behavior of the Indian summer monsoon 2009. J. Earth Syst. Sci, 5 (2011) 783–794.

    Article  ADS  Google Scholar 

  32. Y.K. Tiwari, P.K. Patra, F. Chevallier, R.J. Francey, P.B. Krummel, C.E. Allison, J.V. Revadekar, S. Chakraborty, R.L. Langenfelds, S.K. Bhattacharya, D.V. Borole, R.K. Kumar and L.P. Steele, Carbon dioxide observations at Cape Rama India for the period of 1993–2002: implications for constraining Indian emissions. Curr. Sci., 101 (2011) 1562–1568.

    Google Scholar 

  33. K. Nalini, K.N. Uma, S. Sijikumar, Y.K. Tiwari and R. Ramachandran, Satellite and ground-based measurements of CO2 over the Indian region: its seasonal dependencies, spatial variability, and model estimates. Int. J. Remote Sens., 39 (2018) 7881–7900. https://doi.org/10.1080/01431161.2018.1479787.

    Article  Google Scholar 

  34. J. Kuttippurath, R. Peter, A. Singh and S. Raj, The increasing atmospheric CO2 over India: comparison to global trends. iScience, 25 (2022) 104863. https://doi.org/10.1016/j.isci.2022.

    Article  ADS  Google Scholar 

  35. Y.K. Tiwari, J.V. Revadekar and R.K. Kumar, Variations in atmospheric carbon dioxide and its association with rainfall and vegetation over India. Atmos. Environ., 68 (2013) 45–51.

    Article  ADS  Google Scholar 

  36. D. Pangburn, Water vapour and CO2 for planet warming. Atmos. Sci. (2021). https://doi.org/10.13140/RG.2.2.17727.87205.

    Article  Google Scholar 

Download references

Acknowledgements

Authors thankfully acknowledge NASA’s Goddard Earth Science Data Information and Service Centre (GESDISC) for providing the AIRS data online. The Satellite data have been obtained from http://mirador.gsfc.nasa.gov/. Authors would also like to thank Dr. Thomas Hearty, Dr. S. Wong, and Dr. C.K. Liang for their helpful suggestions regarding the retrievals of temperature profiles from AIRS during the progress of this work. Authors thankfully acknowledge Dr. Vinay Kumar for his kindly helping in data handling and graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anju Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Figure showing the latitudinal bands (0–25° N, 25–50° N and 0–25° S, 25–50° S) on both sides of the Northern and Southern hemisphere.

figure a

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Dhaka, S.K. Variations and Inter Relationship in Mid-tropospheric Carbon Dioxide, Temperature and Water Vapour Using AIRS Observations. MAPAN (2023). https://doi.org/10.1007/s12647-023-00689-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12647-023-00689-z

Keywords

Navigation