Skip to main content
Log in

SH-Wave-Induced Crack Propagation in a Magnetoelastic Material under Initial Stress

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

This research examined the propagation of the crack in an initially strained anisotropic magnetoelastic material due to SH-waves. For a concentrated load of constant intensity and constant loading, the stress intensity factor at the crack tip is calculated separately. The Wiener–Hopf method and the double Fourier integral transform were used to address the problem. Graphs have been used to show the emphatic impact of various influencing parameters on the stress intensity factor in an initially stressed magnetoelastic medium, including fracture speed, crack length, initial stress, anisotropic magnetoelastic coupling parameter, and the angle at which the wave passes through the magnetic field. Using the resulting expression of the stress intensity factor for the force of constant intensity, numerous exceptional cases have been determined. The results were presented using graphs created with Mathematica 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. L. Knopoff, “The interaction between elastic wave motion and a magnetic field in electrical conductors,” J. Geophys. Res. 60, 441–456 (1955). https://doi.org/10.1029/JZ060i004p00441

    Article  ADS  Google Scholar 

  2. J. W. Dunkin and A. C. Eringen, “On the propagation of waves on electromagnetic elastic solids,” Int. J. Eng. Sci. 1, 461-495 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. P. Yu and S. Tang, “Magneto-elastic waves in initially stressed conductors,” J. Appl. Math. Phys. 17, 766–775 (1966). https://doi.org/10.1007/BF01595113

    Article  Google Scholar 

  4. A. E. H. Love, A Treatise on Mathematical Theory of Elasticity (Dover Publ., New York, 1944).

    MATH  Google Scholar 

  5. M. A. Biot, Mechanics of Incremental Deformation (John Wiley and Sons, New York, 1965).

    Book  Google Scholar 

  6. P. C. Pal, S. Kumar, and S. Bose, “Propagation of Rayleigh waves in anisotropic layer overlying a semi-infinite sandy medium,” Ain. Shams Eng. J. 6, 621–627 (2015). https://doi.org/10.1016/j.asej.2014.11.003

    Article  Google Scholar 

  7. S. Kumar, S. Majhi, and P. C. Pal, “Reflection and transmission of plane SH-waves in two semi-infinite anisotropic magnetoelastic media,” Meccan. 50, 2431–2440 (2015). https://doi.org/10.1007/s11012-015-0170-8

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Kumar, P. C. Pal, and S. Majhi, “Reflection and transmission of plane SH-wave through an anistropic magnetoelastic layer sandwiched between two semi-infinite inhomogeneous viscoelastic half-spaces,” Pure Appl. Geophys. 172, 2621–2634 (2015). https://doi.org/10.1007/s00024-015-1048-3

    Article  ADS  Google Scholar 

  9. K. Hemalatha, S. Kumar, and D. Prakash, “Dispersion of Rayleigh wave in a functionally graded piezoelectric layer over elastic substrate,” Forces Mech. 10, 100171 (2023). https://doi.org/10.1016/j.finmec.2023.100171

  10. R. Kaur, S. K. Vishwakarma, and T. R. Panigrahi, “Influence of irregular geologies and inhomogeneity on SH-wave propagation,” Acta Mech. 231 (5), 1821–36 (2020). https://doi.org/10.1007/s00707-019-02598-2

    Article  MathSciNet  MATH  Google Scholar 

  11. S. K. Vishwakarma and T. R. Panigrahi, “Dynamics of SV-wave, SH-wave, and P-wave in a cross-anisotropic medium exhibiting exponential heterogeneity,” Arabian J. Geosci. 14, 337 (2021). https://doi.org/10.1007/s12517-021-06463-2

    Article  Google Scholar 

  12. R. Kaur and S. K. Vishwakarma, “Modeling the mechanical vibrations of Rayleigh surface wave in a medium exhibiting heterogeneity as elementary transcendental functions of depth,” Arabian J. Geosci. 14, 2351 (2021). https://doi.org/10.1007/s12517-021-08607-w

    Article  Google Scholar 

  13. S. Kumawat and S. K. Vishwakarma, “Circumferential SH wave in piezo-reinforced composite structure with imperfect interface bonding,” Appl. Math. Modell. (2023). https://doi.org/10.1016/j.apm.2023.06.034

    Book  Google Scholar 

  14. J. D. Achenbach, “Extension of a crack by a shear wave,” ZAMP 21 (6), 887-900 (1970). https://doi.org/10.1007/BF01594848

    Article  ADS  MATH  Google Scholar 

  15. J. D. Achenbach, Z.P. Bazanta, and R.P. Khetan, “Elastodynamic near-tip fields for a rapidly propagating interface crack,” Int. J. Eng. Sci. 14 (9), 797–809 (1976). https://doi.org/10.1016/0020-7225(76)90065-3

    Article  MATH  Google Scholar 

  16. G. C. Sih and J. F. Loeber, “Interaction of horizontal shear waves with a running crack,” J. Appl. Mech. 37 (2), 324–330 (1970). https://doi.org/10.1115/1.3408509

    Article  ADS  MATH  Google Scholar 

  17. M. Matczynski, “Quasistatic problem of a non-homogeneous elastic layer containing a crack,” Acta Mech. 19 (3), 153–68 (1974). https://doi.org/10.1007/BF01176483

    Article  MATH  Google Scholar 

  18. R. J. Tait and T.B. Moodie, “Complex variable methods and closed form solutions to dynamic crack and punch problems in the classical theory of elasticity,” Int. J. Eng. Sci. 19 (2), 221–229 (1981). https://doi.org/10.1016/0020-7225(81)90022-7

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Chattopadhyay and G. A. Maugin, “Diffraction of magnetoelastic shear waves by a rigid strip,” J. Acoust. Soc. Am. 78 (1), 217-22 (1985). https://doi.org/10.1121/1.392561

    Article  ADS  MATH  Google Scholar 

  20. A. Chattopadhyay and U. Bandyopadhyay, “Propagation of a crack due to shear waves in a medium of monoclinic type,” Acta Mech. 71 (1), 145–56 (1988). https://doi.org/10.1007/BF01173943

    Article  MATH  Google Scholar 

  21. J. R. Willis, “The stress field near the tip of an accelerating crack,” J. Mech. Phys. Solids 40, 1671–1681 (1992). https://doi.org/10.1016/0022-5096(92)90045-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. M. L. Dunn, “The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids,” Eng. Fract. Mech. 48 (1), 25–39 (1994). https://doi.org/10.1016/0013-7944(94)90140-6

    Article  ADS  Google Scholar 

  23. S. Li and P. A. Mataga, “Dynamic crack propagation in piezoelectric materials—Part I. Electrode solution,” J. Mech. Phys. Solids 44 (11), 1799–830 (1996). https://doi.org/10.1016/0022-5096(96)00055-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. S. Li and P. A. Mataga, “Dynamic crack propagation in piezoelectric materials—Part II. Vacuum solution,” J. Mech. Phys. Solids 44 (11), 1831–66 (1996). https://doi.org/10.1016/0022-5096(96)00056-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. C. C. Ma and C. Y. Liao, “Elastodynamic analysis of antiplane anisotropic interface cracks,” J. Eng. Mech. 125 (8), 891-8 (1991). https://doi.org/10.1061/(ASCE)0733-9399(1999)125:8(891)

    Article  Google Scholar 

  26. P. R. Marur and H. V. Tippur, “Dynamic response of bimaterial and graded interface cracks under impact loading,” Int. J. Fracture 103 (1), 95-109 (2000). https://doi.org/10.1023/A:1007621303220

    Article  Google Scholar 

  27. S. Shen, T. Nishioka and S. L. Hu, “Crack propagation along the interface of piezoelectric bimaterial,” Theor. Appl. Fract. Mech. 34 (3), 185–203 (2000). https://doi.org/10.1016/S0167-8442(00)00035-5

    Article  Google Scholar 

  28. B. Loret and E. Radi, “The effects of inertia on crack growth in poroelastic fluid-saturated media,” J. Mech. Phys. Solids 49, 995–1020 (2001). https://doi.org/10.1016/S0022-5096(00)00067-3

    Article  ADS  MATH  Google Scholar 

  29. L. M. Brock, “Interface crack extension at any constant speed in orthotropic or transversely isotropic bimaterials–I. General exact solutions,” Int. J. Solids Struct. 39 (5), 1165–82 (2002). https://doi.org/10.1016/S0020-7683(01)00275-X

    Article  MATH  Google Scholar 

  30. L. M. Brock and M. T. Hanson, “Interface crack extension at any constant speed in orthotropic or transversely isotropic bimaterials–II. Two important examples,” Int. J. Solids Struct. 39 (5), 1183–98 (2002). https://doi.org/10.1016/S0020-7683(01)00276-1

    Article  MATH  Google Scholar 

  31. Z. F. Song and G. C. Sih, “Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation,” Theor. Appl. Fract. Mech. 39 (3), 189–207 (2003). https://doi.org/10.1016/S0167-8442(03)00002-8

    Article  Google Scholar 

  32. C. F. Gao, P. Tong, and T. Y. Zhang, “Interfacial crack problems in magneto-electroelastic solids,” Int. J. Eng. Sci. 41 (18), 2105–21 (2003). https://doi.org/10.1016/S0020-7225(03)00206-4

    Article  Google Scholar 

  33. S. Ueda, “Transient response of a center crack in a functionally graded piezoelectric strip under electromechanical impact,” Eng. Fract. Mech. 73 (11), 1455–71 (2006). https://doi.org/10.1016/j.engfracmech.2006.01.025

    Article  Google Scholar 

  34. X. C. Zhong and X. F. Li, “Fracture analysis of a magnetoelectroelastic solid with a pennyshaped crack by considering the effects of the opening crack interior,” Int. J. Eng. Sci. 46 (4), 374–90 (2008). https://doi.org/10.1016/j.ijengsci.2007.11.005

    Article  MATH  Google Scholar 

  35. W. J. Feng, R. K. Su, J. X. Liu, and Y. S. Li, “Fracture analysis of bounded magnetoelectroelastic layers with interfacial cracks under magnetoelectromechanical loads: plane problem,” J. Intell. Mater. Syst. Struct. 21 (6), 581–94 (2010). https://doi.org/10.1177/1045389X10361630

    Article  Google Scholar 

  36. K. Hu, Z. Chen, and J. Fu, “Dynamic analysis of an interface crack between magnetoelectroelastic and functionally graded elastic layers under anti-plane mechanical and in-plane electromagnetic loadings,” Compos. Struct. 107, 142–8 (2014). https://doi.org/10.1016/j.compstruct.2013.07.057

    Article  Google Scholar 

  37. A. Chattopadhyay and A. K. Singh, “Propagation of a crack due to magnetoelastic shear waves in a self-reinforced medium,” J. Vibr. Contr. 20 (3), 406–20 (2014). https://doi.org/10.1177/1077546312458134

    Article  MathSciNet  Google Scholar 

  38. A. Chattopadhyay, A. K. Singh, and S.Dhua, “Effect of heterogeneity and reinforcement on propagation of a crack due to shear waves,” Int. J. Geomech. 14 (4), 04014013 (2014). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000356

  39. K. Hu, J. Fu, and Z. Yang Z, “Moving Dugdale type crack along the interface of two dissimilar piezoelectric materials,” Theor. Appl. Fract. Mech. 74, 157–63 (2014). https://doi.org/10.1016/j.tafmec.2014.09.004

    Article  Google Scholar 

  40. K. Hu, Z. Chen and J. Fu, “Moving Dugdale crack along the interface of two dissimilar magnetoelectroelastic materials,” Acta Mech. 226 (6), 2065–76 (2015). https://doi.org/10.1007/s00707-015-1298-2

    Article  MathSciNet  MATH  Google Scholar 

  41. A. K. Singh, R. P. Yadav, S. Kumar and A. Chattopadhyay, “Propagation of crack in a pre inhomogeneous poroelastic medium influenced by shear wave,” Eng. Fract. Mech. 154, 191–206 (2016). https://doi.org/10.1016/j.engfracmech.2015.12.024

    Article  Google Scholar 

  42. A. K. Singh, R. P. Yadav, K. C. Mistri and A. Chattopadhyay, “Influence of anisotropy, porosity and initial stresses on crack propagation due to Love-type wave in a poroelastic medium,” Fatigue Fract. Eng. Mater. Struct. 39 (5), 624–36 (2016). https://doi.org/10.1111/ffe.12393

    Article  Google Scholar 

  43. R. P. Yadav, A. K. Singh, and A. Chattopadhyay, “Analytical study on the propagation of rectilinear semi-infinite crack due to Love-type wave propagation in a structure with two dissimilar transversely isotropic layers,” Eng. Fract. Mech. 199, 201–19 (2018). https://doi.org/10.1016/j.engfracmech.2018.05.025

    Article  Google Scholar 

  44. M. M. Monfared and M. Ayatollahi, “Dynamic stress intensity factors of multiple cracks in a functionally graded orthotropic half-plane,” Theor. Appl. Fract. Mech. 56 (1), 49–57 (2011). https://doi.org/10.1016/j.tafmec.2011.09.008

    Article  Google Scholar 

  45. E. Atroshchenko, S. Potapenko and G. Glinka, “Stress intensity factor for a semi-elliptical crack subjected to an arbitrary mode I loading,” Math. Mech. Solids. 19 (3), 289–98 (2014). https://doi.org/10.1177/1081286512463573

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Zhu, B. Yan, D. Cai, et al., “Structural parameter study on stress intensity factors of interfacial crack in thermal barrier coatings,” Ceram. Int. 47 (10), 14354–65 (2021). https://doi.org/10.1016/j.ceramint.2021.02.014

    Article  Google Scholar 

  47. K. Malekzadeh Fard, M. M. Monfared, and K. Norouzipour, “Determination of stress intensity factors in half-plane containing several moving cracks,” Appl. Math. Mech. 34, 1535–42 (20913). https://doi.org/10.1007/s10483-013-1765-8

  48. A. A. Hejazi, M. Ayatollahi, R. Bagheri, and M. M. Monfared, “Dislocation technique to obtain the dynamic stress intensity factors for multiple cracks in a half-plane under impact load,” Arch. Appl. Mech. 84, 95–107 (2014). https://doi.org/10.1007/s00419-013-0785-y

    Article  ADS  MATH  Google Scholar 

  49. P. Mandal and S.C. Mandal, “SH-waves interaction with crack at orthotropic interface,” Waves Random Complex Media 31 (6), 2074–2088 (2021). https://doi.org/10.1080/17455030.2020.1720043

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. J. Huang, H. Wang, L. Zhou, et al., “Analysis of stress intensity factor for a crack emanating from elliptical hole subjected to compressive stress and shear stress,” Theor. Appl. Fract. Mech. 120, 103413 (2022). https://doi.org/10.1016/j.tafmec.2022.103413

  51. M. M. Monfared, “Mode III SIFs for interface cracks in an FGM coating-substrate system,” Struct. Eng. Mech.: Int. J. 64 (1), 71–79 (2017).

    Google Scholar 

  52. L. Xu, K. Wang, Y. Su, et al., “Surface/sub-surface crack-scattered nonlinear rayleigh waves: A full analytical solution based on elastodynamic reciprocity theorem,” Ultrasonics. 118, 106578 (2022). https://doi.org/10.1016/j.ultras.2021.106578

  53. M. Yaylaci, “Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method,” Adv. Nano Res. 12 (4), 405 (2022). https://doi.org/10.12989/anr.2022.12.4.405

    Article  Google Scholar 

  54. S. M. Hosseini, R. Bagheri, and M. M. Monfared, “Transient response of several cracks in a nonhomogeneous half-layer bonded to a magneto-electro-elastic coating,” Theor. Appl. Fract. Mech. 110, 102821 (2020). https://doi.org/10.1016/j.tafmec.2020.102821

  55. B. Noble, Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations (Pergamon Press., London, 1959)

    Book  Google Scholar 

  56. E. C. Titchmark, Theory of Fourier Integrals (Oxford Univ. Press, London, 1939).

    Google Scholar 

  57. A. Erdelyi, F. Oberhettinger, W. Magnus, and F. G. Tricomi, Tables of Integral Transforms, Vol. 1 (McGraw-Hill Book Comp. Inc., New York, 1954). https://doi.org/10.1002/zamm.19540341220

    Book  MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

One of the author gratefully acknowledges to SRMIST, Kattankulathur, India for facilitating with best research facility and providing research fellowship to carryout our research. Authors are also thankful to the Editor and reviewers for their valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Hemalatha, S. Kumar or S. Ahamad.

Ethics declarations

The authors declare no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemalatha, K., Kumar, S. & Ahamad, S. SH-Wave-Induced Crack Propagation in a Magnetoelastic Material under Initial Stress. Mech. Solids 58, 1894–1911 (2023). https://doi.org/10.3103/S0025654423600940

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423600940

Keywords:

Navigation