Skip to main content
Log in

Biomarkers of Hepatic Dysfunction and Cardiovascular Risk

  • Cardiac Biomarkers (AA Quyyumi, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The objective of this manuscript is to examine the current literature on non-alcoholic fatty liver disease (NAFLD) biomarkers and their correlation with cardiovascular disease (CVD) outcomes and cardiovascular risk scores.

Recent Findings

There has been a growing appreciation for an independent link between NAFLD and CVD, culminating in a scientific statement by the American Heart Association in 2022. More recently, studies have begun to identify biomarkers of the three NAFLD phases as potent predictors of cardiovascular risk.

Summary

Despite the body of evidence supporting a connection between hepatic biomarkers and CVD, more research is certainly needed, as some studies find no significant relationship. If this relationship continues to be robust and readily reproducible, NAFLD and its biomarkers may have an exciting role in the future of cardiovascular risk prediction, possibly as risk-enhancing factors or as components of novel cardiovascular risk prediction models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Li B, Zhang C, Zhan Y-T. Nonalcoholic fatty liver disease cirrhosis: a review of its epidemiology, risk factors, clinical presentation, diagnosis, management, and prognosis. Can J Gastroenterol Hepatol. 2018;2018. https://doi.org/10.1155/2018/2784537.

  2. Manne V, Handa P, Kowdley KV. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis. 2018;22(1):23–37. https://doi.org/10.1016/j.cld.2017.08.007.

    Article  PubMed  Google Scholar 

  3. Dyson JK, Anstee QM, McPherson S. Non-alcoholic fatty liver disease: a practical approach to diagnosis and staging. Frontline Gastroenterol. 2014;5(3):211–8. https://doi.org/10.1136/flgastro-2013-100403.

    Article  CAS  PubMed  Google Scholar 

  4. Chowdhury AB, Mehta KJ. Liver biopsy for assessment of chronic liver diseases: a synopsis. Clin Exp Med. 2023;23(2):273–85. https://doi.org/10.1007/s10238-022-00799-z.

    Article  PubMed  Google Scholar 

  5. Li Q, Dhyani M, Grajo JR, Sirlin C, Samir AE. Current status of imaging in nonalcoholic fatty liver disease. World J Hepatol. 2018;10(8):530. https://doi.org/10.4254/wjh.v10.i8.530.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wong VW-S, Adams LA, de Lédinghen V, Wong GL-H, Sookoian S. Noninvasive biomarkers in NAFLD and NASH—current progress and future promise. Nat Rev Gastroenterol Hepatol. 2018;15(8):461–78. https://doi.org/10.1038/s41575-018-0014-9.

  7. •• Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Ann Hepatol. 2023:101133. https://doi.org/10.1016/j.aohep.2023.101133. This recent shift in terminology endorsed by multiple societies of hepatology and gastroenterology marks a mainstream appreciation for this disease state being principally driven by metabolic dysregulation and fundamentally inseparable from other cardiometabolic disorders.

  8. Finney AC, Das SR, Kumar D, et al. The interplay between nonalcoholic fatty liver disease and atherosclerotic cardiovascular disease. Front Cardiovasc Med. 2023;10. https://doi.org/10.3389/fcvm.2023.1116861.

  9. Chen Z, Liu J, Zhou F, et al. Nonalcoholic fatty liver disease: an emerging driver of cardiac arrhythmia. Circ Res. 2021;128(11):1747–65. https://doi.org/10.1161/circresaha.121.319059.

    Article  CAS  PubMed  Google Scholar 

  10. Salah HM, Pandey A, Soloveva A, et al. Relationship of nonalcoholic fatty liver disease and heart failure with preserved ejection fraction. JACC: Basic Transl Sci. 2021;6(11):918–932. https://doi.org/10.1016/j.jacbts.2021.07.010.

  11. Simon TG, Roelstraete B, Hagström H, Sundström J, Ludvigsson JF. Non-alcoholic fatty liver disease and incident major adverse cardiovascular events: results from a nationwide histology cohort. Gut. 2022;71(9):1867–75. https://doi.org/10.1136/gutjnl-2021-325724.

    Article  PubMed  Google Scholar 

  12. Haddad TM, Hamdeh S, Kanmanthareddy A, Alla VM. Nonalcoholic fatty liver disease and the risk of clinical cardiovascular events: a systematic review and meta-analysis. Diabetes Metab Syndr. 2017;11:S209–16. https://doi.org/10.1016/j.dsx.2016.12.033.

    Article  Google Scholar 

  13. Ren Z, Simons PI, Wesselius A, Stehouwer CD, Brouwers MC. Relationship between NAFLD and coronary artery disease: a Mendelian randomization study. Hepatology. 2022. https://doi.org/10.1002/hep.32534.

    Article  PubMed  Google Scholar 

  14. •• Duell PB, Welty FK, Miller M, Chait A, Hammond G, Ahmad Z, et al. Nonalcoholic fatty liver disease and cardiovascular risk: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2022;42(6):e168–85. https://doi.org/10.1161/atv.0000000000000153. This scientific statement from one of the foremost cardiology groups in the USA is the culmination of a significant body of research connecting non-alcoholic fatty liver disease to increased cardiovascular risk. It serves as one of the highest profile publications on the heart-liver axis.

    Article  CAS  PubMed  Google Scholar 

  15. Gheorghe L, Nemteanu R, Clim A, Botnariu GE, Costache II, Plesa A. Risk scores for prediction of major cardiovascular events in non-alcoholic fatty liver disease: a no man’s land? Life. 2023;13(4):857. https://doi.org/10.3390/life13040857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6(1):1–7. https://doi.org/10.1186/1471-230x-6-33.

    Article  Google Scholar 

  17. Kim JH, Moon JS, Byun SJ, Lee JH, Kang DR, Sung KC, et al. Fatty liver index and development of cardiovascular disease in Koreans without pre-existing myocardial infarction and ischemic stroke: a large population-based study. Cardiovasc Diabetol. 2020;19(1):1–9. https://doi.org/10.1186/s12933-020-01025-4.

    Article  CAS  Google Scholar 

  18. Park J, Kim G, Kim H, Lee J, Lee Y-B, Jin S-M, et al. The association of hepatic steatosis and fibrosis with heart failure and mortality. Cardiovasc Diabetol. 2021;20:1–14. https://doi.org/10.1186/s12933-021-01374-8.

    Article  CAS  Google Scholar 

  19. Wang X, Cheng S, Lv J, Yu C, Guo Y, Pei P, et al. Liver biomarkers, genetic and lifestyle risk factors in relation to risk of cardiovascular disease in Chinese. Front Cardiovasc Med. 2022;9:938902. https://doi.org/10.3389/fcvm.2022.938902.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lee J-H, Kim D, Kim HJ, Lee C-H, Yang JI, Kim W, et al. Hepatic steatosis index: a simple screening tool reflecting nonalcoholic fatty liver disease. Dig Liver Dis. 2010;42(7):503–8. https://doi.org/10.1016/j.dld.2009.08.002.

    Article  CAS  PubMed  Google Scholar 

  21. Kweon Y-N, Ko H-J, Kim A-S, Choi H-I, Song J-E, Park J-Y, et al., editors. Prediction of cardiovascular risk using nonalcoholic fatty liver disease scoring systems. Healthcare; 2021: MDPI. https://doi.org/10.3390/healthcare9070899.

  22. Kotronen A, Peltonen M, Hakkarainen A, Sevastianova K, Bergholm R, Johansson LM, et al. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 2009;137(3):865–72. https://doi.org/10.1053/j.gastro.2009.06.005.

    Article  CAS  PubMed  Google Scholar 

  23. Cheung C-L, Lam K, Wong I, Cheung B. Non-invasive score identifies ultrasound-diagnosed non-alcoholic fatty liver disease and predicts mortality in United States. BMC Med. 2014;12(1). https://doi.org/10.1186/s12916-014-0154-x.

  24. Lee C-O, Li H-L, Tsoi M-F, Cheung C-L, Cheung BMY. Association between the liver fat score (LFS) and cardiovascular diseases in the National Health and Nutrition Examination Survey 1999–2016. Ann Med. 2021;53(1):1067–75. https://doi.org/10.1080/07853890.2021.1943514.

    Article  PubMed Central  Google Scholar 

  25. Kim Y, Han E, Lee JS, Lee HW, Kim BK, Kim MK, et al. Cardiovascular risk is elevated in lean subjects with nonalcoholic fatty liver disease. Gut Liver. 2022;16(2):290. https://doi.org/10.5009/gnl210084.

    Article  CAS  PubMed  Google Scholar 

  26. Salazar J, Bermúdez V, Calvo M, Olivar LC, Luzardo E, Navarro C, et al. Optimal cutoff for the evaluation of insulin resistance through triglyceride-glucose index: a cross-sectional study in a Venezuelan population. F1000Research. 2017;6. https://doi.org/10.12688/f1000research.12170.3.

  27. Zhang S, Du T, Zhang J, Lu H, Lin X, Xie J, et al. The triglyceride and glucose index (TyG) is an effective biomarker to identify nonalcoholic fatty liver disease. Lipids Health Dis. 2017;16:1–8. https://doi.org/10.1186/s12944-017-0409-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lopez-Jaramillo P, Gomez-Arbelaez D, Martinez-Bello D, Abat MEM, Alhabib KF, Avezum Á, et al. Association of the triglyceride glucose index as a measure of insulin resistance with mortality and cardiovascular disease in populations from five continents (PURE study): a prospective cohort study. The Lancet Healthy Longevity. 2023;4(1):e23–33. https://doi.org/10.1016/s2666-7568(22)00247-1.

    Article  PubMed  Google Scholar 

  29. Zhao J, Fan H, Wang T, Yu B, Mao S, Wang X, et al. TyG index is positively associated with risk of CHD and coronary atherosclerosis severity among NAFLD patients. Cardiovasc Diabetol. 2022;21(1):1–11. https://doi.org/10.1186/s12933-022-01548-y.

    Article  Google Scholar 

  30. Vuppalanchi R, Jain AK, Deppe R, Yates K, Comerford M, Masuoka HC, et al. Relationship between changes in serum levels of keratin 18 and changes in liver histology in children and adults with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2014;12(12):2121–30. e2. https://doi.org/10.1016/j.cgh.2014.05.010.

  31. Lee J, Vali Y, Boursier J, Duffin K, Verheij J, Brosnan MJ, et al. Accuracy of cytokeratin 18 (M30 and M65) in detecting non-alcoholic steatohepatitis and fibrosis: a systematic review and meta-analysis. PLoS ONE. 2020;15(9):e0238717. https://doi.org/10.1371/journal.pone.0238717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin YC, Chang PF, Chang MH, Ni YH. Genetic determinants of hepatic steatosis and serum cytokeratin‐18 fragment levels in Taiwanese children. Liver Int. 2018;38(7):1300–7. https://doi-org.ucd.idm.oclc.org/10.1111/liv.13689.

  33. Qian L, Zhang L, Wu L, Zhang J, Fang Q, Hou X, et al. Elevated serum level of cytokeratin 18 M65ED is an independent indicator of cardiometabolic disorders. J Diabetes Res. 2020;2020. https://doi.org/10.1155/2020/5198359.

  34. Bhatia L, Scorletti E, Curzen N, Clough GF, Calder PC, Byrne CD. Improvement in non-alcoholic fatty liver disease severity is associated with a reduction in carotid intima-media thickness progression. Atherosclerosis. 2016;246:13–20. https://doi.org/10.1016/j.atherosclerosis.2015.12.028.

    Article  CAS  PubMed  Google Scholar 

  35. Pagano S, Bakker SJ, Juillard C, Dullaart RP, Vuilleumier N. Serum level of cytokeratin 18 (M65) as a prognostic marker of high cardiovascular disease risk in individuals with non-alcoholic fatty liver disease. Biomolecules. 2023;13(7):1128. https://doi.org/10.3390/biom13071128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Türkoğlu C, Gür M, Şeker T, Selek Ş, Koçyiğit A. The predictive value of M30 and oxidative stress for left ventricular remodeling in patients with anterior ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. Coron Artery Dis. 2016;27(8):690–5. https://doi.org/10.1097/MCA.0000000000000416.

    Article  PubMed  Google Scholar 

  37. Lorente L, Martín MM, Pérez-Cejas A, Ramos L, Argueso M, Solé-Violán J, et al. High serum levels of caspase-cleaved cytokeratin-18 are associated with malignant middle cerebral artery infarction patient mortality. BMC Neurol. 2018;18(1):1–6. https://doi.org/10.1186/s12883-018-1038-z.

    Article  CAS  Google Scholar 

  38. Yoneda M, Mawatari H, Fujita K, Iida H, Yonemitsu K, Kato S, et al. High-sensitivity C-reactive protein is an independent clinical feature of nonalcoholic steatohepatitis (NASH) and also of the severity of fibrosis in NASH. J Gastroenterol. 2007;42:573–82. https://doi.org/10.1007/s00535-007-2060-x.

    Article  CAS  PubMed  Google Scholar 

  39. Carrero JJ, Andersson Franko M, Obergfell A, Gabrielsen A, Jernberg T. hsCRP level and the risk of death or recurrent cardiovascular events in patients with myocardial infarction: a healthcare-based study. J Am Heart Assoc. 2019;8(11):e012638. https://doi.org/10.1161/jaha.119.012638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim J, Lee DY, Park SE, Park C-Y, Lee W-Y, Oh K-W, et al. Increased risk for development of coronary artery calcification in subjects with non-alcoholic fatty liver disease and systemic inflammation. PLoS ONE. 2017;12(7):e0180118. https://doi.org/10.1371/journal.pone.0180118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chiang C-H, Huang C-C, Chan W-L, Chen J-W, Leu H-B. The severity of non-alcoholic fatty liver disease correlates with high sensitivity C-reactive protein value and is independently associated with increased cardiovascular risk in healthy population. Clin Biochem. 2010;43(18):1399–404. https://doi.org/10.1016/j.clinbiochem.2010.09.003.

    Article  CAS  PubMed  Google Scholar 

  42. Huang J, Wang M, Wu Y, Kumar R, Lin S. Serum high-sensitive C-reactive protein is a simple indicator for all-cause among individuals with MAFLD. Front Physiol. 2022:2262. https://doi.org/10.3389/fphys.2022.1012887.

  43. Vachliotis ID, Polyzos SA. The role of tumor necrosis factor-alpha in the pathogenesis and treatment of nonalcoholic fatty liver disease. Curr Obes Rep. 2023:1–16. https://doi.org/10.1007/s13679-023-00519-y.

  44. Potoupni V, Georgiadou M, Chatzigriva E, Polychronidou G, Markou E, Zapantis Gakis C, et al. Circulating tumor necrosis factor-α levels in non-alcoholic fatty liver disease: a systematic review and a meta-analysis. J Gastroenterol Hepatol. 2021;36(11):3002–14. https://doi.org/10.1111/jgh.15631.

    Article  CAS  PubMed  Google Scholar 

  45. Kaptoge S, Seshasai SRK, Gao P, Freitag DF, Butterworth AS, Borglykke A, et al. Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J. 2014;35(9):578–89. https://doi.org/10.1093/eurheartj/eht367.

    Article  CAS  PubMed  Google Scholar 

  46. Nair S, Kahlon SS, Sikandar R, Peddemul A, Tejovath S, Hassan D, et al. Tumor necrosis factor-alpha inhibitors and cardiovascular risk in rheumatoid arthritis: a systematic review. Cureus. 2022;14(6). https://doi.org/10.7759/cureus.26430.

  47. Duan Y, Pan X, Luo J, Xiao X, Li J, Bestman PL, et al. Association of inflammatory cytokines with non-alcoholic fatty liver disease. Front Immunol. 2022;13:880298. https://doi.org/10.3389/fimmu.2022.880298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Simon TG, Trejo MEP, McClelland R, Bradley R, Blaha MJ, Zeb I, et al. Circulating interleukin-6 is a biomarker for coronary atherosclerosis in nonalcoholic fatty liver disease: results from the Multi-Ethnic Study of Atherosclerosis. Int J Cardiol. 2018;259:198–204. https://doi.org/10.1016/j.ijcard.2018.01.046.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. https://doi.org/10.1056/nejmoa1707914.

    Article  CAS  PubMed  Google Scholar 

  50. Kucsera D, Tóth VE, Sayour NV, Kovács T, Gergely TG, Ruppert M, et al. IL-1β neutralization prevents diastolic dysfunction development, but lacks hepatoprotective effect in an aged mouse model of NASH. Sci Rep. 2023;13(1):356. https://doi.org/10.1038/s41598-022-26896-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kajani S, Curley S, O’Reilly ME, Yin X, Dillon ET, Guo W, et al. Sodium salicylate rewires hepatic metabolic pathways in obesity and attenuates IL-1β secretion from adipose tissue: the implications for obesity-impaired reverse cholesterol transport. Mol Metab. 2022;56:101425. https://doi.org/10.1016/j.molmet.2021.101425.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang X, Shen J, Man K, Chu ES, Yau TO, Sung JC, et al. CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. J Hepatol. 2014;61(6):1365–75. https://doi.org/10.1016/j.jhep.2014.07.006.

    Article  CAS  PubMed  Google Scholar 

  53. Ajmera V, Perito ER, Bass NM, Terrault NA, Yates KP, Gill R, et al. Novel plasma biomarkers associated with liver disease severity in adults with nonalcoholic fatty liver disease. Hepatology. 2017;65(1):65–77. https://doi.org/10.1002/hep.28776.

    Article  CAS  PubMed  Google Scholar 

  54. Boutari C, Mantzoros CS. Adiponectin and leptin in the diagnosis and therapy of NAFLD. Metab Clin Exp. 2020;103. https://doi.org/10.1016/j.metabol.2019.154028.

  55. Tofler G, Massaro J, O’Donnell C, Wilson P, Vasan R, Sutherland P, et al. Plasminogen activator inhibitor and the risk of cardiovascular disease: The Framingham Heart Study. Thromb Res. 2016;140:30–5. https://doi.org/10.1016/j.thromres.2016.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van den Borne P, Quax PH, Hoefer IE, Pasterkamp G. The multifaceted functions of CXCL10 in cardiovascular disease. Biomed Res Int. 2014;2014. https://doi.org/10.1155/2014/893106.

  57. Zhao S, Kusminski CM, Scherer PE. Adiponectin, leptin and cardiovascular disorders. Circ Res. 2021;128(1):136–49. https://doi.org/10.1161/CIRCRESAHA.120.314458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Feldstein AE, Lopez R, Tamimi TA-R, Yerian L, Chung Y-M, Berk M, et al. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis [S]. J Lipid Res. 2010;51(10):3046–54. https://doi.org/10.1194/jlr.M007096.

  59. Huang C-C, Chang M-T, Leu H-B, Yin W-H, Tseng W-K, Wu Y-W, et al. Association of arachidonic acid-derived lipid mediators with subsequent onset of acute myocardial infarction in patients with coronary artery disease. Sci Rep. 2020;10(1):8105. https://doi.org/10.1038/s41598-020-65014-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Falamarzi K, Malekpour M, Tafti MF, Azarpira N, Behboodi M, Zarei M. The role of FGF21 and its analogs on liver associated diseases. Front Med. 2022;9:967375. https://doi.org/10.3389/fmed.2022.967375.

    Article  Google Scholar 

  61. He L, Deng L, Zhang Q, Guo J, Zhou J, Song W, et al. Diagnostic value of CK-18, FGF-21, and related biomarker panel in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Biomed Res Int. 2017;2017. https://doi.org/10.1155/2017/9729107.

  62. Shen Y, Ma X, Zhou J, Pan X, Hao Y, Zhou M, et al. Additive relationship between serum fibroblast growth factor 21 level and coronary artery disease. Cardiovasc Diabetol. 2013;12(1):1–7. https://doi.org/10.1186/1475-2840-12-124.

    Article  CAS  Google Scholar 

  63. Wu L, Qian L, Zhang L, Zhang J, Zhou J, Li Y, et al. Fibroblast growth factor 21 is related to atherosclerosis independent of nonalcoholic fatty liver disease and predicts atherosclerotic cardiovascular events. J Am Heart Assoc. 2020;9(11):e015226. https://doi.org/10.1161/JAHA.119.015226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lakhani I, Gong M, Wong WT, Bazoukis G, Lampropoulos K, Wong SH, et al. Fibroblast growth factor 21 in cardio-metabolic disorders: a systematic review and meta-analysis. Metabolism. 2018;83:11–7. https://doi.org/10.1016/j.metabol.2018.01.017.

    Article  CAS  PubMed  Google Scholar 

  65. Li Q, Zhang Y, Ding D, Yang Y, Chen Q, Su D, et al. Association between serum fibroblast growth factor 21 and mortality among patients with coronary artery disease. J Clin Endocrinol Metab. 2016;101(12):4886–94. https://doi.org/10.1210/jc.2016-2308.

    Article  CAS  PubMed  Google Scholar 

  66. Sharma B. Hepatic cirrhosis. StatPearls - NCBI Bookshelf. Published October 31, 2022. https://www.ncbi.nlm.nih.gov/books/NBK482419/.

  67. Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43(6):1317–25. https://doi.org/10.1002/hep.21178.

    Article  CAS  PubMed  Google Scholar 

  68. Lee J, Kim HS, Cho YK, Kim EH, Lee MJ, Bae IY, et al. Association between noninvasive assessment of liver fibrosis and coronary artery calcification progression in patients with nonalcoholic fatty liver disease. Sci Rep. 2020;10(1):18323. https://doi.org/10.1038/s41598-020-75266-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yan Z, Liu Y, Li W, Zhao X, Lin W, Zhang J, et al. Liver fibrosis scores and prognosis in patients with cardiovascular diseases: a systematic review and meta-analysis. Eur J Clin Invest. 2022;52(11):e13855. https://doi.org/10.1111/eci.13855.

    Article  CAS  PubMed  Google Scholar 

  70. Han E, Lee Y-h, Lee JS, Lee HW, Kim BK, Park JY, et al. Fibrotic burden determines cardiovascular risk among subjects with metabolic dysfunction-associated fatty liver disease. Gut Liver. 2022;16(5):786. https://doi.org/10.5009/gnl210290.

  71. Namakchian M, Rabizadeh S, Seifouri S, Asadigandomani H, Bafrani MA, Seifouri K, et al. Fibrosis score 4 index has an independent relationship with coronary artery diseases in patients with metabolic-associated fatty liver disease. Diabetol Metab Syndr. 2023;15(1):57. https://doi.org/10.1186/s13098-023-01031-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45(4):846–54. https://doi.org/10.1002/hep.21496.

    Article  CAS  PubMed  Google Scholar 

  73. Chen Y, Xu M, Wang T, Sun J, Sun W, Xu B, et al. Advanced fibrosis associates with atherosclerosis in subjects with nonalcoholic fatty liver disease. Atherosclerosis. 2015;241(1):145–50. https://doi.org/10.1016/j.atherosclerosis.2015.05.002.

    Article  CAS  PubMed  Google Scholar 

  74. Choi S-W, Kweon S-S, Lee Y-H, Ryu S-Y, Nam H-S, Shin M-H. Association of liver fibrosis biomarkers with overall and CVD mortality in the Korean population: The Dong-gu study. PLoS ONE. 2022;17(12):e0277729. https://doi.org/10.1371/journal.pone.0277729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cao Y, Guo S, Dong Y, Liu C, Zhu W. Comparison of liver fibrosis scores for predicting mortality and morbidity in heart failure with preserved ejection fraction. ESC Heart Failure. 2023;10(3):1771–80. https://doi.org/10.1002/ehf2.14336.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ronit A, Kirkegaard-Klitbo DM, Dohlmann TL, Lundgren J, Sabin CA, Phillips AN, et al. Plasma albumin and incident cardiovascular disease: results from the CGPS and an updated meta-analysis. Arterioscler Thromb Vasc Biol. 2020;40(2):473–82. https://doi.org/10.1161/ATVBAHA.119.313681.

    Article  CAS  PubMed  Google Scholar 

  77. Cichoż-Lach H, Celiński K, Prozorow-Król B, Swatek J, Słomka M, Lach T. The BARD score and the NAFLD fibrosis score in the assessment of advanced liver fibrosis in nonalcoholic fatty liver disease. Med Sci Monit: Int Med J Exp Clin Res. 2012;18(12):CR735. https://doi.org/10.12659/msm.883601.

  78. Park J, Kim G, Kim B-S, Han K-D, Kwon SY, Park SH, et al. The associations of hepatic steatosis and fibrosis using fatty liver index and BARD score with cardiovascular outcomes and mortality in patients with new-onset type 2 diabetes: a nationwide cohort study. Cardiovasc Diabetol. 2022;21(1):1–9. https://doi.org/10.1186/s12933-022-01483-y.

    Article  CAS  Google Scholar 

  79. Yilmaz Y, Yonal O, Kurt R, Bayrak M, Aktas B, Ozdogan O. Noninvasive assessment of liver fibrosis with the aspartate transaminase to platelet ratio index (APRI): usefulness in patients with chronic liver disease: APRI in chronic liver disease. Hepat Mon. 2011;11(2):103.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. De Matteis C, Cariello M, Graziano G, Battaglia S, Suppressa P, Piazzolla G, et al. AST to platelet ratio index (APRI) is an easy-to-use predictor score for cardiovascular risk in metabolic subjects. Sci Rep. 2021;11(1):14834. https://doi.org/10.1038/s41598-021-94277-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ballestri S, Mantovani A, Baldelli E, Lugari S, Maurantonio M, Nascimbeni F, et al. Liver fibrosis biomarkers accurately exclude advanced fibrosis and are associated with higher cardiovascular risk scores in patients with NAFLD or viral chronic liver disease. Diagnostics. 2021;11(1):98. https://doi.org/10.3390/diagnostics11010098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bukhari T, Jafri L, Majid H, Ahmed S, Khan AHH, Abid S, et al. Diagnostic accuracy of the Forns score for liver cirrhosis in patients with chronic viral hepatitis. Cureus. 2021;13(4). https://doi.org/10.7759/cureus.14477.

  83. Im Chang U, Kang S-G, Song S-W, Yang JM. Noninvasive serum fibrosis markers are associated with coronary artery calcification in patients with nonalcoholic fatty liver disease. Gut Liver. 2019;13(6):658. https://doi.org/10.5009/gnl18439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ho FK, Ferguson LD, Celis-Morales CA, Gray SR, Forrest E, Alazawi W, et al. Association of gamma-glutamyltransferase levels with total mortality, liver-related and cardiovascular outcomes: a prospective cohort study in the UK Biobank. EClinicalMedicine. 2022;48. https://doi.org/10.1016/j.eclinm.2022.101435.

  85. Ampuero J, Pais R, Aller R, Gallego-Durán R, Crespo J, García-Monzón C, et al. Development and validation of Hepamet fibrosis scoring system–a simple, noninvasive test to identify patients with nonalcoholic fatty liver disease with advanced fibrosis. Clin Gastroenterol Hepatol. 2020;18(1):216–25. e5. https://doi.org/10.1016/j.cgh.2019.05.051.

  86. Perazzo H, Munteanu M, Ngo Y, Lebray P, Seurat N, Rutka F, et al. Prognostic value of liver fibrosis and steatosis biomarkers in type-2 diabetes and dyslipidaemia. Aliment Pharmacol Ther. 2014;40(9):1081–93. https://doi.org/10.1111/apt.12946.

    Article  CAS  PubMed  Google Scholar 

  87. Ritchie H, Spooner F, Roser M. Causes of death. Our world in data. 2018.

  88. •• Chong B, Kong G, Shankar K, Chew HJ, Lin C, Goh R, et al. The global syndemic of metabolic diseases in the young adult population: a consortium of trends and projections from the Global Burden of Disease 2000–2019. Metabolism. 2023;141:155402. https://doi.org/10.1016/j.metabol.2023.155402. Cardiometabolic disease is unfortunately becoming more prevalent on a global scale with each passing year. This important paper highlights the urgency at which research must be conducted in this space such that we may slow, stop, and eventually reverse the momentum of this epidemic.

  89. Sofogianni A, Stalikas N, Antza C, Tziomalos K. Cardiovascular risk prediction models and scores in the era of personalized medicine. J Pers Med. 2022;12(7):1180. https://doi.org/10.3390/jpm12071180.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Elliott J, Bodinier B, Whitaker M, Tzoulaki I, Elliott P, Chadeau-Hyam M. Improving cardiovascular risk prediction beyond pooled cohort equations: a prospective cohort of 304,356 participants. medRxiv. 2023:2023.01. 09.23284368. https://doi.org/10.1101/2023.01.09.23284368.

  91. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139(25):e1082–143. https://doi.org/10.1161/cir.0000000000000625.

    Article  PubMed  Google Scholar 

  92. Hagström H, Nasr P, Ekstedt M, Hammar U, Stål P, Askling J, et al. Cardiovascular risk factors in non-alcoholic fatty liver disease. Liver Int. 2019;39(1):197–204. https://doi.org/10.1111/liv.13973.

    Article  PubMed  Google Scholar 

  93. Olubamwo OO, Virtanen JK, Voutilainen A, Kauhanen J, Pihlajamäki J, Tuomainen T-P. Association of fatty liver index with the risk of incident cardiovascular disease and acute myocardial infarction. Eur J Gastroenterol Hepatol. 2018;30(9):1047–54. https://doi.org/10.1097/MEG.0000000000001183.

    Article  PubMed  Google Scholar 

  94. Brouwers MC, Simons N, Stehouwer CD, Isaacs A. Non-alcoholic fatty liver disease and cardiovascular disease: assessing the evidence for causality. Diabetologia. 2020;63:253–60. https://doi.org/10.1007/s00125-019-05024-3.

    Article  CAS  PubMed  Google Scholar 

  95. Martin P, DiMartini A, Feng S, Brown R Jr, Fallon M. Evaluation for liver transplantation in adults: 2013 practice guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Hepatology. 2014;59(3):1144–65. https://doi.org/10.1002/hep.26972.

    Article  PubMed  Google Scholar 

  96. Androutsakos T, Nasiri-Ansari N, Bakasis A-D, Kyrou I, Efstathopoulos E, Randeva HS, et al. SGLT-2 inhibitors in NAFLD: expanding their role beyond diabetes and cardioprotection. Int J Mol Sci. 2022;23(6):3107. https://doi.org/10.3390/ijms23063107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Loomba R, Sanyal AJ, Kowdley KV, Bhatt DL, Alkhouri N, Frias JP, et al. Randomized, controlled trial of the FGF21 analogue pegozafermin in NASH. N Engl J Med. 2023. https://doi.org/10.1056/nejmoa2304286.

    Article  PubMed  Google Scholar 

  98. Roglansa N, Lagunaa JC, Alegreta M. CURRENT OPINION Bempedoic acid for nonalcoholic fatty liver disease: evidence and mechanisms of action. Curr Opin Lipidol. 2023;34:000-. https://doi.org/10.1097/mol.0000000000000878.

  99. Rippe JM. Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease. Am J Lifestyle Med. 2019;13(2):204–12. https://doi.org/10.1177/1559827618812395.

    Article  PubMed  Google Scholar 

  100. Hallsworth K, Adams LA. Lifestyle modification in NAFLD/NASH: facts and figures. JHEP Reports. 2019;1(6):468–79. https://doi.org/10.1016/j.jhepr.2019.10.008.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Nicholas WS Chew has received grant support from NUHS Seed Fund and National Medical Research Council Research Training Fellowship. Anurag Mehta has received grant funding from VCU Health Pauley Heart Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Mehta.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T.B., Kueh, M.T.W., Jain, V. et al. Biomarkers of Hepatic Dysfunction and Cardiovascular Risk. Curr Cardiol Rep 25, 1783–1795 (2023). https://doi.org/10.1007/s11886-023-01993-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01993-5

Keywords

Navigation