Skip to main content
Log in

Synthesis of azo-linked covalent organic polymers for pipette tip solid-phase extraction of sedative residues from animal tissues samples

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Azo-linked covalent organic polymers (ACOPs) were synthesized by a simple azo reaction, with 2,2ʹ-bis(trifluoromethyl)benzidine and 1,3,5-trihydroxybenzene as the monomers. The preparation process was mild, green, and environmental-friendly, avoiding the use of high temperature, metal catalysis, and harmful organic reagent. The obtained ACOPs were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and Brunauer–Emmett–Teller. With the prepared ACOPs as adsorbent, a method of pipette tip solid-phase extraction–liquid chromatography–tandem mass spectrometry detection (PTSPE–LC–MS/MS) was proposed for the analysis of target sedatives in animal tissues. Furthermore, the parameters for the extraction of five sedatives, including the amount of adsorbent, pH value, ion strength, elution solvent and volume, were investigated. Under the optimized conditions, the linear dynamic range was found from 0.1 to 10.0 μg kg−1, and the limits of detection were ranged from 0.02 to 0.1 μg kg−1. The method was assessed by the analysis of target sedatives in animal tissues, and the recoveries for the spiked pork muscle and pork liver samples were 84–102% and 83–101%, respectively. The results show that the developed method of PTSPE–LC–MS/MS with ACOPs as adsorbent is efficient for the analysis of trace sedatives in animal tissues.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. N.P. Wu, F.G. Ban, L. Peng, H.X. Zhou, Z.T. Liu, H.W. Liu, J. Chin. Mass Spectrom. Soc. 33, 94–98 (2012)

    CAS  Google Scholar 

  2. L.L. Cheng, Y.J. Zhang, J.Z. Shen, C.M. Wu, S.X. Zhang, Chromatographia 71, 155–158 (2010)

    Article  CAS  Google Scholar 

  3. L. Sun, L. Zhang, Q. Xu, S.H. Wang, X. Wang, Chin. J. Chromatogr. 28, 38–42 (2010)

    Article  CAS  Google Scholar 

  4. L.J. Yan, J. Zhang, C.S. Pan, L.Y. Lin, X.Y. Zhang, H.Q. Shen, Chin. J. Anal. Chem. 41, 31–35 (2013)

    Article  CAS  Google Scholar 

  5. L.P. Wang, H.X. Zhao, Y.M. Qiu, Z.Q. Zhou, J. Chromatogr. A 1136(1), 99–105 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. G. Zhang, A.V. Jr Terry, M.G. Bartlett, J. Chromatogr. B 854(1–2), 68–76 (2007)

    Article  CAS  Google Scholar 

  7. L.Q. Zhang, P.G. Wu, Q. Jin, Y.M. Zhang, X.F. Wang, R. Ren, Chin. J. Health Lab. Technol. 23, 1634–1648 (2013)

    CAS  Google Scholar 

  8. GB 31650–2019 National food safety standard maximum residue limits of veterinary drugs in food.

  9. S.A. Meenagh, J.D.G. McEvoy, C.T. Elliott, Anal. Chim. Acta 462, 149–156 (2002)

    Article  CAS  Google Scholar 

  10. J. Cooper, P. Delahaut, T.L. Fodey, C.T. Elliott, Analyst 129, 169–174 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. V. Cerkvenik-Flajs, Anal. Chim. Acta 586, 374–382 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. L. Zhang, P. Wu, Q. Jin, H. Ye, X. Huang, S. Liu, Food Anal. Methods 10, 354–362 (2017)

    Article  Google Scholar 

  13. Y. Aoki, H. Hakamata, Y. Igarashi, K. Uchida, H. Kobayashi, N. Hirayama, A. Kotani, F. Kusu, J. Chromatogr. B 877, 166–172 (2009)

    Article  CAS  Google Scholar 

  14. L. Zhang, P. Wu, Q. Jin, Z. Hu, J. Wang, J. Chromatogr. B 1072, 305–314 (2018)

    Article  CAS  Google Scholar 

  15. J. Zhang, B. Shao, J. Yin, Y. Wu, H. Duan, J. Chromatogr. B 877, 1915–1922 (2009)

    Article  CAS  Google Scholar 

  16. K. Mitrowska, A. Posyniak, J. Zmudzki, Anal. Chim. Acta 637, 185–192 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Ning, Y. Ye, W. Liao, Y. Xu, W. Wang, A. Wang, Food Chem. 397, 133831 (2022)

    Article  CAS  PubMed  Google Scholar 

  18. H. Sun, J. Feng, J. Feng, M. Sun, Y. Feng, M. Sun, Food Chem. 395, 133633 (2022)

    Article  CAS  PubMed  Google Scholar 

  19. R. Sun, F. Lu, C. Yu, Y. Yang, L. Qiao, A. Liu, J. Chromatogr. A 1673, 463101 (2022)

    Article  CAS  PubMed  Google Scholar 

  20. J. Yu, S. Di, H. Yu, T. Ning, H. Yang, S. Zhu, J. Chromatogr. A 1637, 461822 (2021)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Yuan, S. Liang, H. Yan, Z. Ma, Y. Liu, J. Chromatogr. A 1408, 49–55 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. T. Ben, Y. Li, L. Zhu, D. Zhang, D. Cao, Z. Xiang, X. Yao, S. Qiu, Energy Environ. Sci. 5(8), 8370–8376 (2012)

    Article  CAS  Google Scholar 

  23. S. Lin, C.S. Diercks, Y.B. Zhang, N. Kornienko, E.M. Nichols, Y. Zhao, A.R. Paris, D. Kim, P. Yang, O.M. Yaghi, C.J. Chang, Science 349(6253), 1208–1213 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. G. Ji, Z. Yang, H. Zhang, Y. Zhao, B. Yu, Z. Ma, Z. Liu, Angew. Chem. Int. Ed. 55(33), 9685–9689 (2016)

    Article  CAS  Google Scholar 

  25. G. Ji, Z. Yang, H. Zhang, Y. Zhao, B. Yu, Z. Ma, Z. Liu, Angew. Chem. 128, 9837–9841 (2016)

    Article  Google Scholar 

  26. D. Li, M. He, B. Chen, B. Hu, J. Chromatogr. A 1601, 1–8 (2019)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Yamini, M. Faraji, J. Pharm. Anal. 4(4), 279–285 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  28. S. Song, X. Shi, R. Li, Z. Lin, A. Wu, D. Zhang, Process. Biochem. 43, 1209–1214 (2008)

    Article  CAS  Google Scholar 

  29. G. Zhang, J.A.V. Terry, M.G. Bartlett, J. Chromatogr. B 854, 68–76 (2007)

    Article  CAS  Google Scholar 

  30. H.R. Sobhi, Y. Yamini, R. Haji Hosseini Baghdad Abadi, J. Pharm. Biomed. Anal. 45, 769–774 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. C. Li, W.G. Huang Pu, Y. Ting, Y.L. Wu, Chin. J. Anal. Chem. 7, 1015–1018 (2010)

    Google Scholar 

Download references

Funding

This work was supported by the fund from Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province, China (20213BCJ22008), Basic research and Talent training Program of Jiangxi Academy of Agricultural Sciences (JXSNKYJCRC 202201), and the National quality and safety risk assessment of livestock and poultry products in 2022 (GJFP20220301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qie Gen Liao.

Ethics declarations

Conflict of interests

On behalf of all the author, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 889 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, J.J., Yuan, L.J., Liao, Q.G. et al. Synthesis of azo-linked covalent organic polymers for pipette tip solid-phase extraction of sedative residues from animal tissues samples. ANAL. SCI. 39, 1939–1946 (2023). https://doi.org/10.1007/s44211-023-00406-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00406-5

Keywords

Navigation