Skip to main content
Log in

Study on the Photosensitivity of a Composite Based on Lead Selenide and Selenite

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

This paper discusses the technology of formation of photoresistive structures based on a composite of lead selenide and lead selenite. The structures are formed by the oxidation of n-PbSe polycrystalline films. Film The surface modification mechanism of n-PbSe films in the oxidation process is analyzed by a Zeiss Merlin scanning electron microscope (SEM). The new results of the authors on the oxidation mechanism of n-PbSe, together with their earlier publications, are summarized and their consistency with each other is examined. A theoretical model (hypothesis) of the potential profile of a photosensitive heterojunction is proposed, in which each crystal of the n-PbSe film during oxidation in an atmosphere of dry air forms a continuous shell on the p-PbSeO3 surface. The hypothesis on the structural model of the photosensitive heterojunction proposed by other authors, which is based on the oxidation mechanism proposed by us, is practically confirmed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Razeghi, M. and Rogalski, A., Semiconductor ultraviolet detectors, J. Appl. Phys., 1996, vol. 79, no. 10, pp. 7433–7473.

    Article  CAS  Google Scholar 

  2. Zou, Y., Zhang, Y., Hu, Y., and Gu, H., Ultraviolet detectors based on wide bandgap semiconductor nanowire: A review, Sensors, 2018, vol. 18, no. 7, pp. p. 2072.

  3. Jia, L., Zheng, W., and Huang, F., Vacuum-ultraviolet photodetectors, PhotoniX, 2020, vol. 1, p. 22.

  4. Liao, M., Progress in semiconductor diamond photodetectors and MEMS sensors, Funct. Diamond, 2021, vol. 1, no. 1, pp. 29–46.

    Article  Google Scholar 

  5. Blank, T.V. and Gol’dberg, Yu., Semiconductor photoelectric converters for the ultraviolet region of the spectrum, Semiconductors, 2003, vol. 37, pp. 999–1030.

    Article  CAS  Google Scholar 

  6. Taniyasu, Y., Kasu, M., and Makimoto, T., An aluminium nitride light-emitting diode with a wavelength of 210 nanometres, Nature, 2006, vol. 441, pp. 325–328.

    Article  CAS  Google Scholar 

  7. Shur, M.S. and Zukauskas, A., UV Solid-State Light Emitters and Detectors, vol. 144 of Proc. NATO ARW, Ser. II, Dordrecht: Kluwer, 2004.

  8. Guo, F., Yang, B., Yuan, Y., Xiao, Z., Dong, Q., Bi, Y., and Huang, J., A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection, Nat. Nanotechnol., 2012, vol. 7, no. 12, pp. 798–802.

    Article  CAS  Google Scholar 

  9. Sang, L., Liao, M., and Sumiya, M., Comprehensive review of semiconductor ultraviolet photodetectors: From thin film to one-dimensional nanostructures, Sensors, 2013, vol. 13, pp. 10482–10518.

    Article  CAS  Google Scholar 

  10. Soci, C., Zhang, A., Xiang, B., Dayeh, S.A., Aplin, D.P.R., Park, J., Bao, X.Y., Lo, Y.H., and Wang, D., ZnO nanowire UV photodetectors with high internal gain, Nano Lett., 2007, vol. 7, pp. 1003–1009.

    Article  CAS  Google Scholar 

  11. Kind, B.H., Yan, H., Messer, B., Law, M., and Yang, P., Nanowire ultraviolet photodetectors and optical switches, Adv. Mater., 2002, vol. 14, pp. 158–160.

    Article  CAS  Google Scholar 

  12. Ji, L.W., Peng, S.M., Su, Y.K., Young, S.J., Wu, C.Z., and Cheng, W.B., Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays, Appl. Phys. Lett., 2009, vol. 94, no. 20, p. 203106.

  13. Yan, F., Xin, X., Aslam, S., Zhao, Y., Franz, D., Zhao, J.H., and Weiner, M., 4H-SiC UV photo detectors with large area and very high specific detectivity, IEEE J. Quantum Electron., 2004, vol. 40, no. 9, pp. 1315–1320.

    Article  CAS  Google Scholar 

  14. Bi, G., Zhao, F., Ma, J., Mukherjee, S., Li, D., and Shi, Z., Modeling of the potential profile for the annealed polycrystalline PbSe film, PIERS Online, 2009, vol. 5, no. 1, pp. 61–64.

  15. Popov, V.P., Tikhonov, P.A., and Tomaev, V.V., Investigation into the mechanism of oxidation on the surface of lead selenide semiconductor structures, Glass Phys. Chem., 2003, vol. 29, no. 5, pp. 494–500.

    Article  CAS  Google Scholar 

  16. Tomaev, V.V., Miroshkin, V.P., Gar’kin, L.N., and Tikhonov, P.A., Dielectric properties and phase transition in the PbSe + PbSeO3 composite material, Glass Phys. Chem., 2005, vol. 31, no. 6, pp. 812–819.

    Article  CAS  Google Scholar 

  17. Giannuzzi, L.A. and Stevie, F.A., Introduction to Focused Ion Beams. Instrumentation, Theory, Techniques and Practice, New York: Springer, 2005.

    Book  Google Scholar 

  18. Tomaev, V.V., Makarov, L.L., Tikhonov, P.A., and Solomennikov, A.A., Oxidation of lead selenide, Glass Phys. Chem., 2004, vol. 30, no. 4, pp. 349–355.

    Article  CAS  Google Scholar 

  19. Dashevsky, Z., Kasiyan, V., Radovsky, G., Shufer, E., and Auslender, M., Mid-infrared photoluminescence of PbSe film structures up to room temperature, Proc. SPIE, 2008, vol. 7142, no. 11, p. 71420L.

  20. Bube, R., Photoconductivity of Solids, New York: Krieger, 1978.

    Google Scholar 

  21. Humphrey, J.N. and Scanlon, W.W., Photoconductivity in lead selenide. Experimental, Phys. Rev., 1957, vol. 105, no. 1, pp. 469–475.

    Article  CAS  Google Scholar 

  22. Humphrey, J.N. and Petritz, R.L., Photoconductivity of lead selenide: Theory of the mechanism of sensitization, Phys. Rev., 1957, vol. 105, no. 6, pp. 1736–1739.

    Article  CAS  Google Scholar 

  23. Yasuoka, Y. and Wada, M., Thermally stimulated current of vacuum deposited PbSe films, Jpn. J. Appl. Phys., 1974, vol. 13, no. 11, pp. 1797–1803.

    Article  CAS  Google Scholar 

  24. Abrikosov, N.Kh., Bankina, V.F., Poretskaya, L.V., Skudnova, E.V., and Shelimova, L.E., Poluprovodnikovye soedineniya, ikh poluchenie i svoistva (Semiconductor Compounds, their Preparation and Properties), Moscow: Nauka, 1967.

  25. Ravich, Yu.I., Efimova, B.A., and Smirnov, I.A., Metody issledovaniya poluprovodnikov v primenenii k khal’kogenidam svintsa PbTe, PbSe i PbS (Research Methods of Semiconductors Applied to Lead Chalcogenides PbTe, PbSe and PbS), Moscow: Nauka, 1968.

  26. Tomaev, V.V., Egorov, S.V., and Stoyanova, T.V., Investigation into the photosensitivity of a composite from lead selenide and selenite in UV region of spectrum, Glass Phys. Chem., 2014, vol. 40, no. 2, pp. 208–214.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experimental results were obtained using the equipment of the Interdisciplinary Resource Center for Nanotechnology of the Science Park of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tomaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomaev, V.V., Stoyanova, T.V., Petrov, Y.V. et al. Study on the Photosensitivity of a Composite Based on Lead Selenide and Selenite. Glass Phys Chem 49, 486–492 (2023). https://doi.org/10.1134/S1087659623600539

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600539

Keywords:

Navigation