Skip to main content
Log in

New Cesium-Containing Quartzoid Glasses

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Information about new cesium-containing quartzoid glasses (QGs) obtained as a result of the heat treatment of high-silica porous glasses (PGs) impregnated with aqueous solutions of CsNO3 is presented. Quartzoid glasses have been studied by SEM, X-ray diffraction, flame photometry, and energy-dispersive X‑ray spectroscopy. It has been established that the total content of cesium in the synthesized QGs increases with an increase in the concentration of the impregnating solution of cesium nitrate and an increase in the impregnation time of PGs for the selected synthesis conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Selvakumar, J., Maity, S., Rajasekaran, S., Chitra, S., and Paul, B., Thermo-physical behavior of borosilicate glasses in the presence of high-level radioactive liquid waste constituents, J. Therm. Anal. Calorim., 2020, vol. 142, pp. 2251–2261.

    Article  CAS  Google Scholar 

  2. Gin, S., Jollivet, P., Tribet, M., Peuget, S., and Schuller, S., Radionuclides containment in nuclear glasses: An overview, Radiochim. Acta, 2017, vol. 105, no. 11, pp. 927–959.

    Article  CAS  Google Scholar 

  3. Treleaven, J., Gennery, A., Marsh, J., Norfolk, D., Page, L., Parker, A., Saran, F., Thurston, J., and Webb, D., Guidelines on the use of irradiated blood components prepared by the British Committee for Standards in haematology blood transfusion task force, Brit. J. Haematolog., 2011, vol. 152, no. 1, pp. 35–51.

    Article  Google Scholar 

  4. Xu, K., Hrma, P., Rice, J.A., Schweiger, M.J., Riley, B.J., Overman, N.R., and Kruger, A.A., Conversion of nuclear waste to molten glass: Cold-cap reactions in crucible tests, J. Am. Ceram. Soc., 2016, vol. 99, p. 2964.

    Article  CAS  Google Scholar 

  5. Bibler, N.E., Fellinger, T.L., Marra, S.L., O’Drisscol, R.J., Ray, J.W., and Boyce, W.T., Tc-99 and Cs-137 volatility from the DWPF production melter during vitrification of the first macrobatch of HLW sludge at the Savannah River Site, MRS Online Proc. Libr., 1999, vol. 608, p. 697.

    Article  Google Scholar 

  6. Kamizono, H., Kikkawa, S., Tashiro, S., Nakamura, H., and Kanazawa, H., Air contamination by cesium in a canister containing nuclear waste glass, J. Nucl. Mater., 1987, vol. 149, no. 113.

  7. Parkinson, B.G., Holland, D., Smith, M.E., Howes, A.P., and Scales, C.R., Effect of minor additions on structure and volatilization loss in simulated nuclear borosilicate glasses, J. Non-Cryst. Solids, 2007, vol. 353, pp. 4076–4083.

    Article  CAS  Google Scholar 

  8. Asano, M., Kou, T., and Yasue, Y., Mass spectrometric study of vaporization of cesium-containing borosilicate glasses, J. Non-Cryst. Solids, 1987, vol. 92, p. 245.

    Article  CAS  Google Scholar 

  9. Pletser, D., Ohashi, T., Yoshii, Y., and Lee, W.E., Temperature dependent volatilisation behaviour of Cs from two commercial adsorbents used at Fukushima measured using novel experimental apparatus, Prog. Nucl. Energy, 2018, vol. 109, pp. 214–222.

    Article  CAS  Google Scholar 

  10. Stolyarova, V.L., Lopatin, S.I., Belousova, O.L., and Grishchenko, L.V., Phase equilibria and thermodynamic properties of components in the Cs2O-B2O3-SiO2 system at high temperatures, Glass Phys. Chem., 2006, vol. 32, no. 1, pp. 55–62.

    Article  CAS  Google Scholar 

  11. Parkinson, B.G., Holland, D., Smith, M.E., Howes, A.P., and Scales C. R. The effect of Cs2O additions on HLW wasteform glasses, J. Non-Cryst. Solids, 2005, vol. 351, p. 2425.

    Article  CAS  Google Scholar 

  12. Massoni, N., Le Gallet, S., Campayo, L., Koch, R.J., Misture, S.T., Grandjean, A., Bernard, F., Densification of non-radioactive porous siliceous particles loaded with cesium potassium copper hexacyanoferrate by spark plasma sintering, J. Eur. Ceram. Soc., 2021, vol. 41, no. 2, pp. 1506–1513.

    Article  CAS  Google Scholar 

  13. Papynov, E.K., Shichalin, O.O., Mayorov, V.Y., Kuryavyi, V.G., Kaidalova, T.A., Teplukhina, L.V., Portnyagin, A.S., Slobodyuk, A.B., Belov, A.A., Tananaev, I.G., Avramenko, V.A., and Sergienko, V.I., SPS technique for ionizing radiation source fabrication based on dense cesium-containing core, J. Hazard. Mater., 2019, vol. 369, pp. 25–30.

    Article  CAS  Google Scholar 

  14. Mazurin, O.V., Roskova, G.P., Aver’yanov, V.I., and Antropova, T.V., Dvukhfaznye stekla: Struktura, svoistva, primenenie (Two Phase Glasses: Structure, Properties, and Applications), Leningrad: Nauka, 1991.

  15. Alekseeva, Z.D., Anfimova, I.N., and Mazurin, O.V., Method for producing high-silica glass, Inventor’s Certificate No. 631470, Byull. Izobret., 1978, no. 41, p. 89.

  16. Glass rods with refractive index, JPN Patent 58-199746, 1983.

  17. Kosmulski, M., Dawidowicz, A.L., and Szczypa, J., Adsorption of cesium on, and desorption from, controlled porous glasses, J. Radioanal. Nucl. Chem., 1989, vol. 131, no. 2, pp. 377–383.

    Article  CAS  Google Scholar 

  18. Pak, V.N., Lyubavin, M.V., and Borisov, A.N., Temperature dependence of protonic conductivity of porous glasses saturated with solutions of cesium dihydroorthophosphate in orthophosphoric acid, Russ. J. Appl. Chem., 2017, vol. 90, no. 5, pp. 708−711.

  19. Lago, D.C., Nuñez, M., and Prado, M.O., Adsorption of CsCl on porous SiO2 glass surface: Experimental results and ab-initio calculations, J. Non-Cryst. Solids, 2016, vol. 440, pp. 70–75.

    Article  CAS  Google Scholar 

  20. Abbasi, A., Davarkhah, R., Avanes, A., Yadollahi, A., Ghannadi-Maragheh, M., and Sepehrian, H., Development of nanoporous alumino-borosilicate as a novel matrix for the sorption and stable immobilization of cesium ions, J. Inorg. Organomet. Polym. Mater., 2019, vol. 30, pp. 369–378.

    Article  Google Scholar 

  21. Antropova, T.V., Girsova, M.A., Anfimova, I.N., and Drozdova, I.A., Spectral properties of the high-silica porous glasses doped by silver halides, J. Lumin., 2018, vol. 193, pp. 29–33.

    Article  CAS  Google Scholar 

  22. Iskhakova, L.D., Mashinsky, V.M., Milovich, F.O., Velmiskin, V.V., Plastinin, E.A., Firstov, S.V., Lukashova, M.V., Somov, P.A., and Dianov, E.M., Microstructure, composition, and luminescent properties of bismuth-doped porous glass and optical fiber performs, J. Non-Cryst. Solids, 2019, vols. 503–504, pp. 28–35.

    Article  Google Scholar 

  23. Miura, T., Hachinohe, M., Yunoki, A., Hamamatsu, S., and Unno, Y., Validation of measurement comparability of NaI(Tl) scintillation detectors for radioactive cesium in brown rice sample by interlaboratory comparison, J. Radioanal. Nucl. Chem., 2020, vol. 326, pp. 1225–1231.

    Article  CAS  Google Scholar 

  24. Paramonova, T.A., Kuzmenkova, N.V., Godyaeva, M.M., Belyaev, V.R., Ivanov, M.M., and Agapkina, G.I., Cesium-137 root uptake by oat and lettuce test crops from radioactively contaminated chernozem under model experiment conditions, Moscow Univ. Soil Sci. Bull., 2018, vol. 73, no. 1, pp. 18–25.

    Article  Google Scholar 

  25. Rump, A., Ostheim, P., Eder, S., Hermann, C., Abend, M., and Port, M., Preparing for a ‘dirty bomb’ attack: The optimum mix of medical countermeasure resources, Milit. Med. Res., 2021, vol. 8, p. 3.

    Article  Google Scholar 

  26. Oh, S.Y., Heo, N.S., Shukla, S., Kang S.-M., Lee, I., Lee, H., Bajpai, V.K., Jang, S.C., Huh Y.-K., Roh, C., and Huh, Y.S., Multi-stress radioactive-tolerant Exiguobacterium acetylicum CR1 and its applicability to environmental cesium uptake bioremediation, J. Clean. Prod., 2018, vol. 205, pp. 281–290.

    Article  CAS  Google Scholar 

  27. Hu, P.-S., Chou, H.-J., Chen, C.-A., Wu, P.-Y., Hsiao, K.-H., and Kuo, Y.-M., Devising hyperthermia dose of NIR-irradiated Cs0.33WO3 nanoparticles for HepG2 hepatic cancer cells, Nanoscale Res. Lett., 2021, vol. 16, p. 108.

    Article  CAS  Google Scholar 

  28. Antropova, T.V., Kalinina, S.V., Kostyreva, T.G., Drozdova I.A., and Anfimova, I.N., Peculiarities of the fabrication process and the structure of porous membranes based on two-phase fluorine- and phosphorus-containing sodium borosilicate glasses, Glass Phys. Chem., 2015, vol. 41, no. 1, pp. 14–25.

    Article  CAS  Google Scholar 

  29. Simmons, C.J., Ion-exchange method for fabricating high-silica glasses, J. Am. Ceram. Soc., 1981, vol. 64, no. 4, pp. 200–205.

    Article  CAS  Google Scholar 

  30. Antropova, T.V., Girsova, M.A., Anfimova, I.N., Golovina, G.F., Kurilenko, L.N., and Firstov, S.V., Method for producing luminescent bismuth-containing quartzoid material based on high-silica porous glass, RF Patent no. 2605711, Byull. Izobret., 2016, no. 36.

  31. Gutnikov, S.I., Popov, S.S., Efremov, V.A., Ma, P.-C., and Lazoryak, B.I., Correlation of phase composition, structure, and mechanical properties of natural basalt continuous fibers, Nat. Resour. Res., 2021, vol. 30, pp. 1105–1119.

    Article  CAS  Google Scholar 

  32. Antropova, T. and Drozdova, I., Features of the structure of phase-separated and porous borosilicate glasses with/without an impurity of fluorid-ions according to electron microscopy, Opt. Appl., 2008, vol. 38, no. 1, pp. 17–24.

    Google Scholar 

  33. Ma, J., Fang, Z., Yang, X., Wang, B., Luo, F., Zhao, X., Wang, X., and Yang, Y., Investigating hollandite-perovskite composite ceramics as a potential waste form for immobilization of radioactive cesium and strontium, J. Mater. Sci., 2021, vol. 56, no. 16, pp. 9644–9654

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study of the synthesized samples using the EDS method was carried out by A.V. Antonov at the Karpinsky All-Russian Research Geological Institute.

The experimental studies related to the study of the morphology of samples were performed on the equipment of the Center for the Collective Use of Scientific Equipment “Composition, Structure, and Properties of Structural and Functional Materials” of the National Research Center “Kurchatov Institute,” Prometey Institute for Theoretical and Experimental Physics.

Funding

This study was carried out as part of a state task of the Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences with the support of the RF Ministry of Science and Higher Education (state registration no. АААА-А19-119022290087-1 and no. 1021050501068-5-1.4.3 (project FFEM-2022-0004)).

The study of the morphology of samples was supported by the RF Ministry of Science and Higher Education, agreement no. 13.TsKP.21.0014 (075-11-2021-068), unique identification number RF-2296.61321X0014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Tsyganova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyganova, T.A., Girsova, M.A., Kurylenko, L.N. et al. New Cesium-Containing Quartzoid Glasses. Glass Phys Chem 49, 456–462 (2023). https://doi.org/10.1134/S1087659622600417

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622600417

Keywords:

Navigation