Skip to main content
Log in

Superhydrophobic Coating Based on Decorated Carbon Nanoparticles

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A method is proposed for increasing the resistance of a superhydrophobic coating based on a CNT xerogel to frost deposition through the use of decorating nanoparticles. The effects of the addition of fullerenes, carbon nanoonions (CNOs), detonation nanodiamonds, silicon dioxide, and paraffin to the xerogel are tested. An increase in the resistance of the coating to the deposition of condensate in the form of frost is revealed. The addition of fullerene C60 leads to the best results. Increasing the resistance to icing allows us to spend less power on heating the surface during short cold snaps, bypassing the anti-icing properties of the protective superhydrophobic layer. However, the application of this approach shows a deterioration in the resistance of the coating to the penetration of the spray. This is given a qualitative explanation and measures to combat it are proposed. No effect of the additives on the mechanical properties of the coating or its resistance to damage is detected. In additon, decorating additives affect the formation of the coating relief. With this, it is possible to influence the stochastic processes of the formation of roughness during the drying of the xerogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Boinovich, L.B. and Emelyanenko, A.M., Anti-icing potential of superhydrophobic coatings, Mendeleev Commun., 2013, vol. 23, no. 1, pp. 3–10.

    Article  CAS  Google Scholar 

  2. Barthlott, W. and Neinhuis, C., Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 1997, vol. 202, pp. 1–8.

    Article  CAS  Google Scholar 

  3. Wong, T.S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B.D., Grinthal, A., and Aizenber, J., Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature, 2011, vol. 477, pp. 443–447.

    Article  CAS  Google Scholar 

  4. Solov’yanchik, L.V., Kondrashov, S.V., Nagornaya, V.S., and Mel’nikov, A.A., Feature of receipt anti-icing coating (Review), Tr. VIAM, 2018, no. 6, p. 66.

  5. Solov’yanchik, L.V. and Kondrashov, S.V., The prospects of using carbon nanotubes to impart functional properties to the surface of polymer materials (Review), Tr. VIAM, 2021, no. 9, p. 103.

  6. Boinovich, L.B. and Emel’yanenko, A.M., Hydrophobic materials and coatings: Principles of design, properties and applications, Russ. Chem. Rev., 2008, vol. 77, no. 7, pp. 583–600.

    Article  CAS  Google Scholar 

  7. Solov’yanchik, L.V., Kondratov, S.V., Nagornaya, V.S., Volkov, I.A., D’yachkova, T.P., and Borisov, K.M., Highly hydrophobic conducting nanocomposites based on a fluoropolymer with carbon nanotubes, Russ. J. Appl. Chem., 2018, vol. 91, no. 10, pp. 1654–1659.

    Article  Google Scholar 

  8. Nazhipkyzy, M. and Mansurov, Z.A., Super hydrophobic materials and coatings: Overview, Goren. Plazmokhim., 2020, no. 4, pp. 163–180.

  9. Lafuma, A. and Quere, D., Superhydrophobic states, Nat. Mater., 2003, vol. 2, pp. 457–460.

    Article  CAS  Google Scholar 

  10. Mumm, F., van Helvoort, A.T.J., and Sikorski, P., Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems, ACS Nano, 2009, vol. 3, pp. 2647–2652.

    Article  CAS  Google Scholar 

  11. Rao, A.V., Latthe, S.S., Nadargi, D.Y., Hirashima, H., and Ganesan, V., Preparation of MTMS based transparent superhydrophobic silicafilms by sol-gel method, J. Colloid Interface Sci., 2009, vol. 332, pp. 484–490.

    Article  Google Scholar 

  12. Xiaoli, W. and Faxing, Z., Surface and mechanical properties of anorganic-inorganic super-hydrophobic coating using modified nano-SiO2 and mixing polyurethane emulsion as raw materials, J. Adhes. Sci. Technol., 2018, vol. 32, pp. 1809–1821.

    Article  Google Scholar 

  13. Gnanappa, A.K., Gogolides, E., Evangelista, F., and Riepen, M., Contact line dynamics of a superhydrophobic surface: Application for immersion lithography, Microfluid. Nanofluid., 2011, vol. 10, pp. 1351–1357.

    Article  CAS  Google Scholar 

  14. Zhou, S.-S., Guan, Z.-Sh., and Pang, Y., Fabrication of polypropylene super-hydrophobic surface using PTFE-coated-sieves template via templating and splitting process, Polym. Plast. Technol. Eng., 2012, vol. 51, no. 1, pp. 845–848.

    Article  CAS  Google Scholar 

  15. Campos, R.B.V., da Rocha, T.D., Wysard, M.M., Jr., and Camargo, S.A. de S., Jr., Superhydrophobic and low reflectance carbon nanotubes buckypapers, Mater. Res., 2022, vol. 25, p. e20220136.

    Article  CAS  Google Scholar 

  16. He, S., Wei, J., Wang, H., et al., Stable superhydrophobic surface of hierarchical carbon nanotubes on Si micropillar arrays, Nanoscale Res. Lett., 2013, vol. 8, p. 412.

    Article  Google Scholar 

  17. Eseev, M.K., Goshev, A.A., Kapustin, S.N., and Tsykareva, Y.V., Creation of superhydrophobic coatings based on MWCNTs xerogel, Nanomaterials, 2019, vol. 9, p. 1584.

    Article  CAS  Google Scholar 

  18. Eseev, M.K., Kapustin, S.N., Lugvishchuk, D.S., Mordkovich, V.Z., and Lyakh, N.L., A superhydrophobic coating based on onion-like carbon nanoparticles, Tech. Phys. Lett., 2020, vol. 46, no. 11, pp. 1120–1123.

    Article  CAS  Google Scholar 

  19. Kapustin, S., Zabolotny, S., Eseev, M., and Tsykareva, Y., Double-layer superhydrophobic anti-icing coating based on carbon nanoparticles, Crystals, 2022, vol. 12, no. 10, p. 1501.

    Article  CAS  Google Scholar 

  20. Makarov, N.A. and Trapeznikova, E.S., Decoration of carbon nanostructures in order to bind a ceramic matrix (review), Usp. Khim. Khim. Tekhnol., 2020, vol. 34, no. 5 (228), pp. 92–93.

  21. UNT of Taunit Ser., NanoTekhTsentr. http://www. nanotc.ru/producrions/87-cnm-taunit. Accessed May 19, 2023.

  22. Mordkovich, V.Z., Lugvishchuk, D.S., Mitberg, E.B., et al., Formation of concentric shell carbon by homogeneous partial oxidation of methane, Chem. Phys. Lett., 2018, vol. 713, pp. 242–246.

    Article  CAS  Google Scholar 

  23. Shilova, O.A., Glebova, I.B., Voshchikov, V.I., Ugolkov, V.L., Dolmatov, V.Yu., Komarova, K.A., and Ivanova, A.G., Environmentally friendly antifouling transparent coatings based on sol-gel ‘epoxy/titanium tetrabutoxide’ composition modified with detonation nanodiamond, J. Adv. Mater. Technol., 2022, vol. 7, no. 3, pp. 201–208.

    Google Scholar 

  24. Rao, K.S., El-Hami, K., Kodaki, T., Matsushige, K., and Makino, K., A novel method for synthesis of silica nanoparticles, J. Colloid Interface Sci., 2005, vol. 289, no. 1, pp. 125–131.

    Article  CAS  Google Scholar 

  25. Demin, V.A., Blank, V.D., Karaeva, A.R., et al., C60 fullerene decoration of carbon nanotubes, J. Exp. Theor. Phys., 2016, vol. 123, pp. 985–990.

    Article  CAS  Google Scholar 

  26. Jiang, G., Liu, Z., and Hu, J., Superhydrophobic and photothermal PVDF/CNTs durable composite coatings for passive anti-icing/active de-icing, Adv. Mater. Interfaces, 2022, vol. 9, p. 2101704.

    Article  CAS  Google Scholar 

  27. Fan, J., Long, Z., Wu, J., et al., Electrothermal superhydrophobic epoxy nanocomposite coating for anti-icing/deicing, J. Coat. Technol. Res., 2023, vol. 20, pp. 1557–1568.

  28. Türk, S., Characterization of chitosan/polyethylenimine film layer as a novel anti-fog coating surface, J. Appl. Polym. Sci., 2022, vol. 139, no. 37, p. e52884.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 22-22-20115.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. N. Kapustin or Yu. V. Tsykareva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapustin, S.N., Eseev, M.K., Tsykareva, Y.V. et al. Superhydrophobic Coating Based on Decorated Carbon Nanoparticles. Glass Phys Chem 49, 526–534 (2023). https://doi.org/10.1134/S1087659623600527

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600527

Keywords:

Navigation