Skip to main content
Log in

Temperatures- and Pressure-Dependent Thermostructural Properties of Ti2AlC MAX-Phase Using Quasi-Harmonic Debye Approximation

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A first principle study was performed to investigate the electronic and thermostructural properties of the Ti2AlC MAX-phase using quasi-harmonic Debye approximation. The thermodynamical properties of Ti2AlC MAX-phase at various temperatures and pressure were calculated via the quasi-harmonic Debye approximation and explored the role of temperature and pressure on heat capacity, bulk modulus, thermal expansion coefficient, Debye temperature, enthalpy, entropy, and Gibbs free energy. Surprisingly, both the bulk modulus and Debye temperature was observed to drop with increase in temperature. However, a rise in both occurred as the pressure gradually builds up. This suggests that the heat capacity is influenced by pressure and temperature in opposing ways. The observation of increase in both heat capacities (Cp and Cv) due to increase in temperature infers an increase in the thermal velocity of the atoms. Consequently, the thermal velocity of the atoms decreases with a decrease in pressure which affects Cp and Cv, respectively. In addition, the Gibbs free energy slope increased at a little rate at constant pressure. These novel results possessing improved thermostructural properties could be useful for high-temperature fatigue-resistant applications specially in a gas turbine engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Heydari, S., Attaeyan, A., Bitaraf, P., Gholami, A.M., and Kamyab Moghadas, B., Investigation of modern ceramics in bioelectrical engineering with proper thermal and mechanical properties, J. Simul. Anal., 2021, vol. 13, pp. 43–52.

    Google Scholar 

  2. Huang, T., Song, P., Li, C., Shu, Y., Sun, B., Ji, Q., Arif, M., and Yi, J., Phase transition and interface evolution of Al2O3/ZrO2 particles in plasma-sprayed coatings, Ceram. Int., 2020, vol. 46, pp. 12275–12281.

    Article  CAS  Google Scholar 

  3. Ali, S., Song, P., Murtaza, G., Huang, T., Shakeel, A.R., Ahmad, S.A., and Lu, J., The effect of bulk conversion into surface on physical properties of HfO2: First principle study, Mater. Sci. Semicond. Process, 2020, vol. 146, p. 106650.

    Article  Google Scholar 

  4. Ashton, M., Trometer, N., Mathew, K., Suntivich, J., Freysoldt, C., Sinnott, S.B., and Hennig, R.G., Predicting the electrochemical synthesis of 2D materials from first principles, J. Phys. Chem. C, 2019, vol. 123, pp. 3180–3187.

    Article  CAS  Google Scholar 

  5. Huang, T., Deng, C., Song, P., Lu, J., Li, C., Shu, Y., Sun, B., Ahmad, S.A., Ji, Q., and Yi, J., Effect of the interface morphology and initial nanocrack on the fracture property of a ceramic reinforced plasma-sprayed coating, Ceram. Int., 2020, vol. 46, pp. 24930–24939.

    Article  CAS  Google Scholar 

  6. Li, C., Huang, T., Song, P., Yuan, X., Feng, J., Lu, K., Li, Q., Duan, W., and Lu, J., Effect of water vapour on morphology of the Si/Ti-rich phase at the interface between oxide layer and aluminide coating, Corros. Sci., 2020, vol. 163, p. 108240.

    Article  CAS  Google Scholar 

  7. Li, Q., Song, P., Lu, K., Huang, W., Duan, W., Huang, T., and Lu, J., Enhanced interface adhesion by in-situ oxidation within metal-ceramic coatings, Ceram. Int., 2018, vol. 44, pp. 23273–23278.

    Article  CAS  Google Scholar 

  8. He, X., Yuan, X., Xu, H., Song, P., Yu, X., Li, C., Huang, T., Li, Q., Lu, K., Feng, J., Lu, J., and Lu, J., Analysis of structure and microhardness of Al2O3–40 wt  % TiO2/NiCoCrAl gradient coating with in-situ needle-like phase reinforcement after high-temperature treatment, Ceram. Int., 2019, vol. 45, pp. 14546–14554.

    Article  Google Scholar 

  9. Zhao, S., Ma, H., Li, X., Sui, S., Shao, T., Wang, J., Feng, B., Wei, D., Li, Q., and Qu, S., Achieving high temperature broadband electromagnetic reflection reduction via Al2O3/FeCrAl refractory composite coating, Ceram. Int., 2022, vol. 48, pp. 13340–13347.

    Article  CAS  Google Scholar 

  10. Shafi, M., Zhou, M., Duan, P., Liu, W., Zhang, W., Zha, Z., Gao, J., Wali, S., Jiang, S., Man, B., and Liu, M., Highly sensitive and recyclable surface-enhanced Raman scattering (SERS) substrates based on photocatalytic activity of ZnSe nanowires, Sens. Actuators, B, 2022, vol. 356, p. 131360.

    Article  CAS  Google Scholar 

  11. Li, Q., Wang, Y., Du, P., Song, P., Zhang, R., Li, Z., and Lu, J., Oxidation properties and microstructure of a chromium coating on zircaloy-4 fuel cladding material applied by atmospheric plasma spraying, J. Nucl. Mater., 2022, vol. 560, p. 153496.

    Article  CAS  Google Scholar 

  12. Khan, M., Tiehu, L., Hussain, A., Raza, A., Zada, A., Alei, D., Khan, A.R., Ali, R., Hussain, H., Hussain, J., Wahab, Z., and Imran, M., Physiochemical evaluations, mechanical attenuations and thermal stability of graphene nanosheets and functionalized nanodiamonds loaded pitch derived carbon foam composites, Diamond Relat. Mater., 2022, vol. 126, p. 109077.

    Article  CAS  Google Scholar 

  13. Nowotny, H., Rogl, P., and Schuster, J.C., Structural chemistry of complex carbides and related compounds, J. Solid State Chem., 1982, vol. 44, pp. 126–133.

    Article  CAS  Google Scholar 

  14. Tan, C., Cao, X., Wu, X.J., He, Q., Yang, J., Zhang, X., Chen, J., Zhao, W., Han, S., Nam, G.H., Sindoro, M., and Zhang, H., Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev., 2017, vol. 117, pp. 6225–6331.

    Article  CAS  Google Scholar 

  15. Wali, S., Yin, Q., Li, J., Si, G., Shafi, M., Ren, J., and Zhang, H., Organic rubrene/topological insulator Bi2Se3/SiO2 hybrid heterojunction photodetector for broadband and ultrafast photodetection application, J. Mater. Chem. C, 2021, vol. 10, pp. 1289–1301.

    Article  Google Scholar 

  16. Berger, O., The correlation between structure, multifunctional properties and application of PVD MAX phase coatings, Surf. Eng., 2020, vol. 36, pp. 225–267.

    Article  CAS  Google Scholar 

  17. Li, H., Chen, Y., Wang, H., Wang, H., Li, Y., Harran, I., Li, Y., and Guo, C., First-principles study of mechanical and thermodynamic properties of Ti–Ga intermetallic compounds, J. Alloys Compd., 2017, vol. 700, pp. 208–214.

    Article  CAS  Google Scholar 

  18. Liu, P., Xie, J., Wang, A., Ma, D., and Mao, Z., An interatomic potential for accurately describing the atomic-scale deformation behaviors of Ti2AlC crystal, Comput. Mater. Sci., 2020, vol. 182, p.109757.

    Article  CAS  Google Scholar 

  19. Sousa, O.M., Araújo, R.S., and Júnior, G.J.B., Calculation of the structural, energetic, electronic, and magnetic properties of LiAl5O8 doped with Fe and Cr: Ab initio method, J. Phys. Chem. Solids, 2020, vol. 138, p. 109298.

    Article  CAS  Google Scholar 

  20. Liu, X., Liu, Y., Zhu, H.R., Liu, X.H., Zhang, W.L., and Zuo, X., First-principles study on the impact of stress on depassivation of defects at a-SiO2/Si interfaces, Front. Mater., 2022, vol. 279, p. 872837.

    Article  Google Scholar 

  21. Perdew, J.P. and Wang, Y., Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 1992, vol. 45, p. 13244.

    Article  CAS  Google Scholar 

  22. Mao, L., Ke, W., Pedesseau, L., Wu, Y., Katan, C., Even, J., Wasielewski, M.R., Stoumpos, C.C., and Kanatzidis, M.G., Hybrid Dion–Jacobson 2D lead iodide perovskites, J. Am. Chem. Soc., 2018, vol. 140, pp. 3775–3783.

    Article  CAS  Google Scholar 

  23. Blanco, M.A., Francisco, E., and Luana, V., Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun., 2004, vol. 158, pp. 57–72.

    Article  CAS  Google Scholar 

  24. Yang, T., Zhu, X., Ji, J., and Wang, J., First-principles study of phase transition, elastic and thermodynamic properties of ZnSe at high pressure, Sci. Rep., 2020, vol. 10, p. 3265.

    Article  CAS  Google Scholar 

  25. Ahmad, J.F. and Alkammash, I.Y., Theoretical study of some thermodynamical properties for solid under high pressure using finite-strain EOS, J. Assoc. Arab. Univ. Basic Appl. Sci., 2012, vol. 12, pp. 17–22.

    CAS  Google Scholar 

  26. Barsoum, M.W., The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates, Prog. Solid State Chem., 2000, vol. 28, pp. 201–281.

    Article  CAS  Google Scholar 

  27. Ali, S., Huang, T., Song, P., Shah, S.H., Ali, R., Arif, M., and Lu, J., First-principle-based structural and thermodynamic parameters of Ni-Al intermetallic compounds under different pressures and temperatures, Mod. Phys. Lett. B, 2021, vol. 35, p. 2150124.

    Article  CAS  Google Scholar 

  28. Zhou, Y. and Sun, Z., Electronic structure and bonding properties of layered machinable Ti2AlC and Ti2AlN ceramics, Phys. Rev. B, 2000, vol. 61, p. 12570.

    Article  CAS  Google Scholar 

  29. Wen, Z., Zhao, Y., Hou, H., Tian, J., and Han, P., First-principles study of Ni–Al intermetallic compounds under various temperature and pressure, Superlattices Microstruct., 2017, vol. 103, pp. 9–18.

    Article  CAS  Google Scholar 

  30. Luo, X. and Wang, B., Structural and elastic properties of LaAlO3 from first-principles calculations, J. Appl. Phys., 2008, vol. 104, p. 73518.

    Article  Google Scholar 

  31. Jasiukiewicz, C. and Karpus, V., Debye temperature of cubic crystals, Solid State Commun., 2003, vol. 128, pp. 167–169.

    Article  CAS  Google Scholar 

  32. Hughes, R.S., Wang, J., Decyk, V.K., and Gary, S.P., Effects of variations in electron thermal velocity on the whistler anisotropy instability: Particle-in-cell simulations, Phys. Plasmas, 2016, vol. 23, p. 42106.

    Article  Google Scholar 

  33. Dhaliwal, G., Nair, P.B., and Singh, C.V., Machine learned interatomic potentials using random features, npj Comput. Mater., 2022, vol. 8, p. 7.

    Article  Google Scholar 

  34. Barsoum, M.W. and Radovic, M., Elastic and mechanical properties of the MAX phases, Ann. Rev. Mater. Res., 2011, vol. 41, pp. 195–227.

    Article  CAS  Google Scholar 

  35. Wang, J. and Zhou, Y., Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M = Ti, V, Nb, and Cr) ceramics, Phys. Rev. B, 2004, vol. 69, p. 214111.

    Article  Google Scholar 

  36. Sun, Z., Ahuja, R., Li, S., and Schneider, J.M., Structure and bulk modulus of M2AlC (M = Ti, V, and Cr), Appl. Phys. Lett., 2003, vol. 83, pp. 899–901.

    Article  CAS  Google Scholar 

Download references

Funding

The present work was supported by the National Natural Science Foundation of China under Grant no. 51961019, and the Yunnan Province Science Technology Major Project no. 2019ZE001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Khan or Peng Song.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

AUTHORS’ CONTRIBUTIONS

Rawaid Ali, Muhammad Shafi, Muhammad Khan and Muhammad Ibrar designed and write the main manuscript. Professor Jiansheng Lu, Peng Song and Taihong Huang, were provided different characterizations as well financial support. Amir Zada, and Shabir Ali, reviewed the manuscript and helped with some structures design by using various softwares.

AVAILABILITY OF DATA AND MATERIALS

It is stated that all datasets on which the conclusions of the paper rely are included in the supplementary information files. Whereas, the raw data supporting the conclusion of this article will be made available by the authors, without undue reservation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawaid Ali, Shafi, M., Khan, M. et al. Temperatures- and Pressure-Dependent Thermostructural Properties of Ti2AlC MAX-Phase Using Quasi-Harmonic Debye Approximation. Glass Phys Chem 49, 493–502 (2023). https://doi.org/10.1134/S1087659623600163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600163

Keywords:

Navigation