Skip to main content
Log in

Sol-Gel Synthesis of Nanosized Powders and Obtaining Ceramic Composites Based on Zircon and Zirconium Oxide

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Nanosized precursor powders of (1 – x)ZrSiO4xZrO(OH)2 are synthesized by the sol-gel method with the separate precipitation of components to obtain (1 – x)ZrSiO4xZrO2 ceramic composites. The thermal behavior of precursor powders is studied by differential scanning calorimetry and thermogravimetry (DSC/TG). Ceramic composites with a high level of microhardness are obtained by sintering powders, preliminarily calcined at 850°C, in air in the temperature range 1000‒1300°C. In the future, such ceramic composites can be used as matrices for solidification and isolating high-level waste (HLW).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Grechanovsky, A.E., Urusov, V.S., and Eremin, N.N., Molecular dynamics study of self-radiation damage in mineral matrices, J. Struct. Chem., 2016, vol. 57, no. 6, pp. 1243–1262.

    Article  CAS  Google Scholar 

  2. Ferriss, E.D.A., Ewing, R.C., and Becker, U., Simulation of thermodynamic mixing properties of actinide-containing zircon solid solutions, Am. Mineral., 2010, vol. 95, pp. 229–241.

    Article  CAS  Google Scholar 

  3. Burakov, B.E., Anderson, E.B., Rovsha, V.S., Ushakov, S.V., Ewing, R.C., Lutze, W., and Weber, W.J., Synthesis of zircon for immobilization of actinides, MRS Proc., 2011, vol. 412, pp. 33–39.

  4. Williford, R.E., Begg, B.D., Weber, W.J., and Hess, N.J., Computer simulation of Pu3+ and Pu4+ substitutions in zircon, J. Nucl. Mater., 2000, vol. 278, nos. 2–3, pp. 207–211.

    Article  CAS  Google Scholar 

  5. Wang, L. and Liang, T., Ceramics for high level radioactive waste solidification, J. Adv. Ceram., 2012, vol. 1, no. 3, pp. 194–203.

    Article  CAS  Google Scholar 

  6. Ding, Y., Lu, X., Dan, H., Shu, X., Zhang, S., and Duan, T., Phase evolution and chemical durability of Nd-doped zircon ceramics designed to immobilize trivalent actinides, Ceram. Int., 2015, vol. 41, no. 8, pp. 10044–10050.

    Article  CAS  Google Scholar 

  7. Ding, Y., Lu, X., Tu, H., Shu, X., Dan, H., Zhang, S., and Duan, T., Phase evolution and microstructure studies on Nd3+ and Ce4+ co-doped zircon ceramics, J. Eur. Ceram. Soc., 2015, vol. 35, no. 7, pp. 2153–2161.

    Article  CAS  Google Scholar 

  8. Burakov, B.E., Anderson, E.B., Zamoryanskaya, M.V., Yagovkina, M.A., Strykanova, E.E., and Nikolaeva, E.V., Synthesis and study of 239Pu-doped ceramics based on zircon, (Zr, Pu)SiO4, and hafnon, (Hf,Pu)SiO4, in Proceedings of the Symposium on Scientific Basis for Nuclear Waste Management XXIV, Mater. Res. Soc., 2001, vol. 663, pp. 307–313.

  9. Hanchar, J.M., Burakov, B.E., Zamoryanskaya, M.V., Garbuzov, V.M., Kitsay, A.A., and Zirlin, V.A., Investigation of Pu incorporated into zircon single crystal, in Proceedings of the Symposium on Scientific Basis for Nuclear Waste Management XXVIII, Mater. Res. Soc., 2004, vol. 824, pp. 225–229.

  10. Orlova, A.I. and Ojovan, M.I., Ceramic mineral waste-forms for nuclear waste immobilization, Materials, 2019, vol. 12, no. 16, p. 2638.

    Article  CAS  Google Scholar 

  11. Antsiferov, V.N., Kul’met’eva, V.B., Porozova, S.E., and Krokhaleva, E.G., Influence of zirconia on properties of nickel catalysts for oxidative conversion of methane, Nov. Ogneupory, 2011, no. 4, pp. 35–38.

  12. Ding, Y., Jiang, Z., Li, Y., Tang, Y., Li, J., Dong, X., Dan, H., Yang, Y., and Duan, T., Low temperature and rapid preparation of zirconia/zircon (ZrO2/ZrSiO4) composite ceramics by a hydrothermal-assisted sol-gel process, J. Alloys Compd., 2018, vol. 735, pp. 2190–2196.

    Article  CAS  Google Scholar 

  13. Rendtorff, N.M., Grasso, S., Hu, C., Suarez, G., Aglietti, E.F., and Sakka, Y., Zircon–zirconia (ZrSiO4–ZrO2) dense ceramic composites by spark plasma sintering, J. Eur. Ceram. Soc., 2012, vol. 32, no. 4, pp. 787–793.

    Article  CAS  Google Scholar 

  14. Rendtorff, N.M., Grasso, S., Hu, C., Suarez, G., Aglietti, E.F., and Sakka, Y., Dense zircon (ZrSiO4) ceramics by high energy ball milling and spark plasma sintering, Ceram. Int., 2012, vol. 38, no. 3, pp. 1793–1799.

    Article  CAS  Google Scholar 

  15. Thandalam, S.K., Ramanathan, S., and Sundarrajan, S., Synthesis, microstructural and mechanical properties of ex situ zircon particles (ZrSiO4) reinforced metal matrix composites (MMCs): A review, J. Mater. Res. Technol., 2015, vol. 4, no. 3, pp. 333–347.

    Article  CAS  Google Scholar 

  16. Mezentseva, L.P., Kruchinina, I.Yu., Osipov, A.V., Ugolkov, V.L., Popova, V.F., and Lapenok, A.Yu., The influence of the particularities of synthesis on the physicochemical properties of nanosized powders and ceramic samples of REE orthophosphates, Glass Phys. Chem., 2015, vol. 41, no. 6, pp. 668–671.

  17. Fedorenko, N.Y., Abiev, R.S., Kudryashova, Y.S., Ugolkov, V.L., Khamova, T.V., Zdravkov, A.V., Kalinina, M.V., Shilova, O.A., and Mjakin, S.V., Comparative study of zirconia based powders prepared by co-precipitation and in a microreactor with impinging swirled flows, Ceram. Int., 2022, vol. 49, no. 9, pp. 13006–13013.

    Article  Google Scholar 

  18. Mezentseva, L., Osipov, A., Ugolkov, V., Kruchinina, I., Maslennikova, T., and Koptelova, L., Sol-gel synthesis of precursors and preparation of ceramic composites based on LaPO4 with Y2O3 and ZrO2 additions, J. Sol-Gel Sci. Technol., 2019, vol. 92, no. 2, pp. 427–441.

    Article  CAS  Google Scholar 

  19. Zaplishnyi, V.N., Stroganov, A.M., Skorodnevskaya, L.A., Stroganov, V.M., Kotlyarov, I.S., and Zavodnoe, V.S., Catalytic hydrolysis of alkoxysilanes and production of waterproofing materials based on them, Khim. Khim. Tekhnol., 1991, vol. 34, no. 6, pp. 4–15.

    Google Scholar 

  20. Murashkevich, A.N., Kamlyuk, T.V., and Zharskii, I.M., Preparation of SiO2 films by the sol-gel method and their properties, Tr. Belorus. Tekhnol. Iniv., Ser. 3: Khim. Tekhnol. Neorg. Veshchestv, 2003, no. 11, pp. 92–107.

  21. Rakhimova, O.V., Magomedova, O.S., and Tsyganova, T., Investigation of hydrolytic polycondensation in systems based on tetraethoxysilane by DK-spectrophotometry method, Glass Phys. Chem., 2019, vol. 45, no. 6, pp. 419–427.

    Article  CAS  Google Scholar 

  22. Xiong, X.-B., Ni, X.-Y., Li, Y.-Y., Chu, C.-C., Zou, J.-Z., and Zeng, X.-R., A novel strategy for preparation of Si-HA coatings on C/C composites by chemical liquid vaporization deposition/hydrothermal treatments, Sci. Rep., 2016, vol. 6, no. 1, p. 31309.

    Article  CAS  Google Scholar 

  23. Kwon, S.Y. and Jung, I.-H., Critical evaluation and thermodynamic optimization of the CaO–ZrO2 and SiO2–ZrO2 systems, J. Eur. Ceram. Soc., 2017, vol. 37, no. 3, pp. 1105–1116.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 23-23-00378 (https://rscf.ru/project/23-23-00378/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Ugolkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugolkov, V.L., Koval’chuk, N.A., Osipov, A.V. et al. Sol-Gel Synthesis of Nanosized Powders and Obtaining Ceramic Composites Based on Zircon and Zirconium Oxide. Glass Phys Chem 49, 503–509 (2023). https://doi.org/10.1134/S1087659623600540

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600540

Keywords:

Navigation