Skip to main content
Log in

Migration Mechanism and Magnetic Properties of Fe Ions in Glass–Ceramics of an Iron-Rich CMAS System

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Utilizing mining and metallurgical waste as a resource is one of the effective methods to tackle the issue of solid waste accumulation. In this study, the CaO–MgO–Al2O3–SiO2 system glass–ceramics were prepared based on the traditional melt-casting technique using iron ore slag as the main raw material. Investigations were done on how different iron ion concentrations affected glass–ceramics properties. And the migration pattern of iron ions was explored deeply using Raman spectroscopy and FTIR. XRD revealed the crystallization ability of augite and magnetite increasing as the iron ions grew. The combination of vibrating sample magnetometer, electron backscatter diffraction, and MFM techniques indicates that the distribution of magnetite, grain size, and structure are connected to the magnetic performances of glass–ceramics. Glass–ceramics has outstanding magnetic properties and flexural strength. Therefore, it has vast potential for future development in electronic devices, wear-resistant applications, and electromagnetic shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Salman, S.M., Salama, S.N., and Abo-Mosallam, H.A., Contribution of some divalent oxides replacing Li2O to crystallization characteristics and properties of magnetic glass–ceramics based on Li2O–Fe2O3–Al2O3–SiO2, Ceram. Int., 2016, vol. 42, pp. 8650–8656.

    Article  CAS  Google Scholar 

  2. Singh Danewalia, S., Kaur, S., Bansal, N., Khan, S., and Singh, K., Influence of TiO2 and thermal processing on morphological, structural and magnetic properties of Fe2O3/MnO2 modified glass–ceramics, J. Non-Cryst. Solids, 2019, vol. 513, pp. 64–69.

  3. Shakdofa, M.M.E., Mahdy, E.A., and Abo-Mosallam, H.A., Thermo-magnetic properties of Fe2O3-doped lithium zinc silicate glass–ceramics for magnetic applications, Ceram. Int., 2021, vol. 47, pp. 25467–25474.

  4. Abo-Mosallam, H.A., Ibrahim, S., and Mahdy, E.A., New high nickel-containing glass–ceramics based on Li2O–CaO–SiO2 eutectic (954°C) system for magnetic applications, J. Non-Cryst. Solids, 2022, vol. 580, p. 121385.

    Article  CAS  Google Scholar 

  5. Pang, Z.G., Xing, X.D., Xue, Q.G., Wang, J.S., and Zuo, H.B., Influence of Na2O on the thermodynamics properties, viscosity, and structure of CaO–SiO2–MgO–Al2O3–BaO–Na2O slag, Ceram. Int., 2022, vol. 48, pp. 23357–23364.

    Article  CAS  Google Scholar 

  6. Zhang, Z.K., Li, Z.C., Shen, Y.B., Ma, J., and Liu, L.N., Preparation and characterization of fully waste-based glass–ceramics from incineration fly ash, waste glass and coal fly ash, Ceram. Int., 2022, vol. 48, pp. 21679–21688.

    CAS  Google Scholar 

  7. Xu, W.C., Shen, K.X., Cao, Z., Liu, F., Zhang, Y.X., Zhang, T.Z., Wu, N.N., and Ouyang, S.L., Crystallization and thermal stability effects on tailings glass–ceramics by various heat treating processes, Mater. Chem. Phys., 2021, vol. 263, p. 124334.

    Article  CAS  Google Scholar 

  8. Deng, L.B., Yao, B., Lu, W.W., Zhang, M.X., Li, H., Chen, H., Zhao, M., Du, Y.S., Zhang, M.R., Ma, Y.H., and Wang, W.C., Effect of SiO2/Al2O3 ratio on the crystallization and heavy metal immobilization of glass ceramics derived from stainless steel slag, J. Non-Cryst. Solids, 2022, vol. 593, p. 121770.

    Article  CAS  Google Scholar 

  9. Liu, S.Y., Chen, Y.X., Li, H.R., Li, B.W., and Ouyang, S.L., Microstructural transformation of stainless steel slag-based CAMS glass ceramics prepared by SPS, Ceram. Int., 2021, vol. 47, pp. 1284–1293.

    Article  CAS  Google Scholar 

  10. Han, L., Song, J., Lin, C.W., Liu, T.Y., Zhang, Q., Luo, Z.W., and Lu, A.X., Crystallization, structure, and properties of MgO–Al2O3–SiO2 highly crystalline transparent glass–ceramics nucleated by multiple nucleating agents, J. Eur. Ceram. Soc., 2018, vol. 38, pp. 4533–4542.

    Article  CAS  Google Scholar 

  11. He, D.F., Ma, H., and Zhong, H., Effect of different nucleating agent ratios on the crystallization and properties of MAS glass ceramics, J. Eur. Ceram. Soc., 2021, vol. 41, pp. 342–350.

    Article  CAS  Google Scholar 

  12. Liu, C.S., Xie, S.F., Bai, H.R., Yan, F., Fu, T.T., Shen, B., and Zhai, J.W., Excellent energy storage performance of niobate-based glass–ceramics via introduction of nucleating agent, J. Materiom., 2019, vol. 30, pp. 15277–15284.

    Google Scholar 

  13. Huang, J.H., Zhang, J.H., Yu, Y.J., Yu, Y.J., Bai, H.T., Zhang, Z.L., and Huang, Y.Q., Transparent MgO–Al2O3–SiO2 glass–ceramics prepared with ZrO2 and SnO2 as nucleating agents, J. Non-Cryst. Solids, 2022, vol. 588, p. 121585.

    Article  CAS  Google Scholar 

  14. Shi, Y., Song, X.W., and Han, X.X., Catalytic mechanism of iron oxide doping on the crystallization process of Cr2O3-containing glass ceramics, J. Non-Cryst. Solids, 2021, vol. 570, p. 121002.

    Article  CAS  Google Scholar 

  15. Shi, Y., Han, X.X., Li, B.W., Chen, Y.X., and Zhang, M.X., Modification of glass network and crystallization of CaO–Al2O3–MgO–SiO2 based glass ceramics with addition of iron oxide, Ceram. Int., 2020, vol. 46, pp. 9207–9217.

    Article  CAS  Google Scholar 

  16. Li, Z., Ma, G.J., Zheng, D.L., and Zhang, X., Effect of Fe2O3 on the crystallization behavior, microstructure and properties of glass–ceramics prepared from the modified tailings after reduction of copper slag, Mater. Today Commun., 2022, vol. 31, p. 103516.

    Article  CAS  Google Scholar 

  17. Alizadeh, P., Yekta, B.E., and Gervei, A., Effect of Fe2O3 addition on the sinterability and ma-chinability of glass–ceramics in the system MgO–CaO–SiO2–P2O5, J. Eur. Ceram. Soc., 2004, vol. 24, pp. 3529–3533.

    Article  CAS  Google Scholar 

  18. Karamanov, A., Pisciella, P., Cantalini, C., and Pelino, M. Influence of Fe3+/Fe2+ ratio on the crystallization of iron-rich glasses made with industrial wastes, J. Am. Ceram. Soc., 2000, vol. 83, pp. 3153–3157.

  19. Shang, W.X., Peng, Z.W., Huang, Y.W., Gu, F.Q., Zhang, J., Tian, H.M., Yang, L., Tian, W.G., Rao, M.J., Li, G.H., and Jiang, T., Production of glass–ceramics from metallurgical slags, J. Cleaner Prod., 2021, vol. 317, p. 128220.

    Article  CAS  Google Scholar 

  20. Zhao, M.Z., Cao, J.W., Geng, X.H., Song, W.F., and Wang, Z., Structural origin of CaO–MgO–Al2O3–SiO2–Fe2O3 glass crystallization: Iron-containing clusters, J. Non-Cryst. Solids, 2020, vol. 547, p. 120295.

    Article  CAS  Google Scholar 

  21. Zhao, M.Z., Cao, J.W., Wang, Z., and Li, G.H., Insight into the dual effect of Fe2O3 addition on the crystallization of CaO–MgO–Al2O3–SiO2 glass–ceramics, J. Non-Cryst. Solids, 2019, vol. 513, pp. 114–151.

    Article  Google Scholar 

  22. Vercamer, V., Lelong, G., Hijiya, H., Kondo, Y., Galoisy, L., and Calas, G., Diluted Fe3+ in silicate glasses: Structural effects of Fe-redox state and matrix composition. An optical absorption and X-band/Q-band EPR study, J. Non-Cryst. Solids, 2015, vol. 428, pp. 138–145.

  23. Hou, Y., Zhang, G.H., and Chou, K.C., Effect of atmosphere control on magnetic properties of CaO–Al2O3–SiO2–Fe3O4 glass ceramics, J. Eur. Ceram. Soc., 2021, vol. 41, pp. 2663–2673.

    Article  CAS  Google Scholar 

  24. Li, B.W., Du, Y.S., and Zhang, X.F., Effects of iron oxide on the crystallization kinetics of Baiyunebo tailing glass–ceramics, Trans. Indian Ceram. Soc., 2013, vol. 72, pp. 119–123.

    Article  CAS  Google Scholar 

  25. Zhang, S., Zhang, Y.L., and Qu, Z.M., Physicochemical property and chromium leaching behavior in different environments of glass ceramics prepared from AOD stainless steel slag, J. Alloys Compd., 2019, vol. 805, pp. 1106–1116.

    Article  CAS  Google Scholar 

  26. Jung, S.S. and Sohn, I., Crystallization control for remediation of a FetO-rich CaO–SiO2–Al2O3–MgO EAF waste slag, Environ. Sci. Technol., 2014, vol. 48, pp. 1886–1892.

    Article  CAS  Google Scholar 

  27. Yang, L.X. and Belton, G.R., Iron redox equilibria in CaO–Al2O3–SiO2 and MgO–CaO–Al2O3–SiO2 slags, Metall. Mater. Trans. B, 1998, vol. 29, pp. 837–845.

    Article  Google Scholar 

  28. Wright, S. and Zhang, L., The influence of Fe3+/Fe2+ ratio on the viscosity of iron silicate slags, Proc. VII Int. Conf. on Molten Slags Fluxes and Salts, S. Afr. Inst. Mining Metall., 2004, vol. 1, pp. 231–236.

    CAS  Google Scholar 

  29. Shi, Y., Song, X.W., Han, X.X., Zhang, M.X., and Dong, M.Y., Influences of additives on crystal multiformity and composition in a CaO–Al2O3–MgO–SiO2 based glass–ceramics, Adv. Compos. Hybrid Mater., 2021, vol. 4, pp. 614–628.

    Article  CAS  Google Scholar 

  30. Rajiendra, K.S., Kothiyal, G.P., and Srinivasan, A., Influence of iron ions on the magnetic properties of CaO–SiO2–P2O5–Na2O–Fe2O3 glass–ceramics, Solid State Commun., 2008, vol. 146, pp. 25–29.

    Article  Google Scholar 

  31. Ivashchenko, O., Jurga-Stopa, J., Coy, E., Peplinska, B., Pietralik, Z., and Jurga, S., Fourier transform infrared and Raman spectroscopy studies on magnetite/Ag/antibiotic nanocomposites, Appl. Surf. Sci., 2016, vol. 364, pp. 400–409.

  32. Guo, C.F., Hu, Y., Qian, H.S., Ning, J.Q., and Xu, S.J., Magnetite (Fe3O4) tetrakaidecahedral microcrystals: Synthesis, characterization, and micro-Raman study, Mater. Charact., 2011, vol. 62, pp. 148–151.

    Article  CAS  Google Scholar 

  33. Slavov, L., Abrashev, M.V., Merodiiska, T., Gele, C., Vandenberghe, R.E., Ivania, N.M., and Nedkov, I., Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids, J. Magn. Magn. Mater., 2010, vol. 322, pp. 1904–1911.

    Article  CAS  Google Scholar 

  34. Gonçalves Avancini, T., Tramontin Souza, M., Novaes de Oliveira, A.P., Arcaro, S., and Kopp Alves, A., Magnetic properties of magnetite-based nano-glass–ceramics obtained from a Fe-rich scale and borosilicate glass wastes, Ceram. Int., 2019, vol. 45, pp. 4360–4367.

  35. Vieira de Sousa, D., Ker, J.C., Schaefer, C.E.R., Rodet, M.J., Moura Guimarães, L., and Felix, J.F., Magnetite originating from bonfires in a brazilian prehistoric anthrosol: A micro-Raman approach, Catena, 2018, vol. 171, pp. 552–564.

  36. Sandep, B.S., Mangeshi, V.K., Prashant, B.K., and Jadhav, K.M., Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (Zn–Fe2O4): Thermal, structural, spectral, optical and physisorption analysis, Ceram. Int., 2020, vol, 46, pp. 8640–8650.

    Article  Google Scholar 

  37. Liu, G.X., Dai, B., Ren, Y., Zhang, K.B., Ye, D.J., Hu, C.F., Zhang, W.T., and Fu, S., Microstructure and magnetic properties of nickel-zinc ferrite ceramics fabricated by spark plasma sintering, Ceram. Int., 2022, vol. 48, pp. 10412–10419.

    Article  CAS  Google Scholar 

  38. Danewalia, S.S. and Singh, K., Magnetic and bioactive properties of MnO2/Fe2O3 modified Na2O–CaO–P2O5–SiO2 glasses and nanocrystalline glass–ceramics, Ceram. Int., 2016, vol. 42, pp. 11858–11865.

    Article  CAS  Google Scholar 

  39. Azooz, M.A. and Abdel-Hameed, S.A.M., Synthesis, characterization and magnetic properties of glass ceramics containing nanoparticles of both Ba-hexaferrite and Zn-ferrite, Ceram. Int., 2014, vol. 40, pp. 4499–4505.

    Article  CAS  Google Scholar 

  40. Li, G.D., Zhang, K.L., Pei, Z.J., Zhang, N., Yu, Y.Z., Zhao, S.T., Liang, G.F., Zhou, J., and Xing, Y.Y., A novel method to enhance magnetic property of bioactive glass–ceramics for hyperthermia, Ceram. Int., 2019, vol. 45, pp. 4945–4956.

    Article  CAS  Google Scholar 

  41. Kodama, R.H., and Berkowitz, A.E., Atomic-scale magnetic modeling of oxide nanoparticles, Phys. Rev. B, 1999, vol. 59, pp. 6321–6336.

    Article  CAS  Google Scholar 

  42. Alarifi, A., Deraz, N.M., and Shaban, S., Structural, morphological and magnetic properties of NiFe2O4 nano-particles, J. Alloys Compd., 2009, vol. 486, pp. 501–506.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (grant nos. 11964025, 11564031), Inner Mongolia Major Basic Research Open Project (grant no. 0406091701), Inner Mongolia Autonomous Region Postgraduate Education Innovation Program, (grant no. BZ2020027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunli Ouyang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wence Xu, Cao, Z., Ma, R. et al. Migration Mechanism and Magnetic Properties of Fe Ions in Glass–Ceramics of an Iron-Rich CMAS System. Glass Phys Chem 49, 463–477 (2023). https://doi.org/10.1134/S1087659623600072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600072

Keywords:

Navigation