Skip to main content
Log in

Fragmentary Model of the Atomic Structure of the Ion-Conducting Semiconductor Glass AgGeAsSe3

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The atomic radial distribution function of vitreous AgGeAsSe3, obtained based on the experimental intensity curves taken with monochromatic copper and molybdenum radiation, is interpreted using a fragmentary model in the entire ordering region (~9 Å). It is shown that the glass consists of selenium and selenium-arsenic tetrahedra with germanium and silver atoms inside. The spatial arrangement of such tetrahedra in glass within the ordering region is similar to their arrangement in the GeAsSe and GeSe2 structures. It is proposed that the “openwork” structure of the fragments of these structures allows the movement of Ag+ ions (ionic conductivity) in vitreous AgGeAsSe3. Fragments of the structure of the ion-conducting compound Ag2Se are not found in the studied glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Chalcogenide Glasses: Preparation, Properties and Applications, Adam, J.-L. and Zhang, X., Eds., Cambridge: Woodhead, 2014.

  2. Singh, A.K. and Jen, T.-C., Chalcogenide. Carbon Nanotubes and Graphene Composites, London: CRC, 2021.

    Book  Google Scholar 

  3. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics), St. Petersburg: St. Petersb. Gos. Univ., 2000, vol. 1.

  4. Kawamura, J., Asayama, R., Kuwata, N., and Kamishima, O., Ionic transport in glass and polymer: Hierarchical structure and dynamics, in Physics of Solid State Ionics, Sakuma, T. and Takahashi, H., Eds., Research Singpost, 2006, pp. 193–246.

    Google Scholar 

  5. Baranova, E.R., Kobelev, L.Ya., Zlokazov, V.B., et al. RF Patent 2066076.

  6. Melnikova, N., Kheifets, O., Babushkin, A., and Sukhanova, G., Transport properties of amorphous chalcogenides in the system Cu–Ag–Ge–As–Se in a broad range of temperatures and pressures, EPJ Web Conf., 2011, vol. 15, p. 03004.

  7. Aleinikova, K.B., Zinchenko, E.N., and Likhach, N.I., Diffraction methods for the analysis of nanodispersed materials, Zavod. Lab., Diagn. Mater., 2005, vol. 71, no. 4, pp. 27–31.

    CAS  Google Scholar 

  8. Aleinikova, K.B. and Zinchenko, E.N., Fragment model as a phase analysis method for diffraction amorphous materials, J. Struct. Chem., 2009, vol. 50, no. 7, pp. S93–S99.

    Article  Google Scholar 

  9. Aleinikova, K.B., Zinchenko, E.N., and Zmeikin, A.A., Application of fragmentary model to analysis of the atomic structure of amorphous materials, J. Phys.: Conf. Ser., 2021, vol. 1942, p. 012011.

    CAS  Google Scholar 

  10. Cromer, D.T. and Waber, J.T., Scattering factors computed from relativistic Dirac–Slater wave functions, Acta Crystallogr., 1965, vol. 18, pp. 104–109.

    Article  CAS  Google Scholar 

  11. Nabitovich, I.D., Stetsiv, Ya.I., and Voloshchuk, Ya.V., Determination of the coherent and background intensity from the experimental electron scattering curve, Sov. Phys. Crystallogr., 1967, vol. 12, no. 4, pp. 513–516.

    Google Scholar 

  12. McCracken, W.S. and Dorn, D.D., Numerical Methods and Fortran Programming, With Applications in Engineering and Science, New York: Wiley 1964.

    Google Scholar 

  13. Faddeev, M.A. and Markov, K.A., Chislennye metody (Numerical Methods), Nizh. Novgorod: Nizhegor. Gos. Univ., 2005.

  14. Vainshtein, B.K., On the theory of the radial distribution method, Sov. Phys. Crystallogr., 1957, vol. 2, no. 1, pp. 24–31.

    Google Scholar 

  15. Warren, B.E., X-ray studies of glass structure, Sov. Phys. Crystallogr., 1971, vol. 16, no. 6, pp. 1106–1113.

    Google Scholar 

  16. Porai-Koshits, M.A., Prakticheskii kurs rentgenostrukturnogo analiza (Practical Course of X-Ray Diffraction Analysis), Moscow: Mosk. Gos. Univ., 1960, vol. 2.

  17. Aleinikova, K.B., Zinchenko, E.N., and Zmeikin, A.A., Specific features of the atomic structure of an amorphous Al85Ni10Nd5 alloy, Glass Phys. Chem., 2021, vol. 47, no. 5, pp. 462–468.

    Article  CAS  Google Scholar 

  18. Aleinikova, K.B. and Likhach, N.I., Fragmentary model as applied to analysis of spectroscopically pure vitreous SiO2, Glass Phys. Chem., 2005, vol. 31, pp. 648–655.

    Article  CAS  Google Scholar 

  19. Oliveria, M., McMullan, R.K., and Wuensch, B.J., Single srystal neutron diffraction analysis of the cation distribution in the high-temperature phases α-Cu2 – xS, α-Cu2 – xSe, and α-Ag2Se, Solid State Ionics, 1988, vols. 28–30, pp. 1332–1337.

    Article  Google Scholar 

  20. Carre, D., Ollitrault-Fichet, R., and Flahaut, J., Structure de Ag8GeSe6 beta, Acta Crystallogr., Sect. B, 1980, vol. 36, pp. 245–249.

    Article  Google Scholar 

  21. Nuriev, I.R., Imamov, R.M., and Shafizade, R.B., On the structure of a new cubic phase in the Ag–Se system, Sov. Phys. Crystallogr., 1971, vol. 16, no. 6, pp. 895–896.

    Google Scholar 

  22. Villarreal, M.A., de Chalbaud, L.M., Fernadez, B.J., et al. Preparation and electrical characterization of the compound CuAgGeSe3, J. Phys.: Conf. Ser., 2009, vol. 167, p. 012045.

    Google Scholar 

  23. Hulliger, F. and Siegrist, T., The crystal structure of GeAsSe, Mater. Res. Bull., 1981, vol. 16, pp. 1245–1251.

    Article  CAS  Google Scholar 

  24. Dittmar, G. and Schäfer, H., Die Kristallstruktur von Germaniumdiselenid, Acta Crystallogr., Sect. B, 1976, vol. 32, pp. 2726–2728.

    Article  Google Scholar 

  25. Pradel, A. and Piarristeguy, A.A., Ag-conducting chalcogenide glasses: Applications in programmable metallization cells, in Nanostructured Materials for Advanced Technological Application, Amsterdam: Springer, 2009, pp. 435–444.

    Google Scholar 

  26. Cuello, G.J., Piarristeguy, A.A., Fernandez-Martinez, A., et al., Structure of chalcogenide glasses by neutron diffraction, J. Non-Cryst. Solids, 2007, vol. 353, pp. 729–732.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. B. Aleinikova, E. N. Zinchenko or N. V. Melnikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleinikova, K.B., Zinchenko, E.N. & Melnikova, N.V. Fragmentary Model of the Atomic Structure of the Ion-Conducting Semiconductor Glass AgGeAsSe3. Glass Phys Chem 49, 421–430 (2023). https://doi.org/10.1134/S1087659623600497

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659623600497

Keywords:

Navigation