Skip to main content
Log in

Enhancement of Optical and Electrical Properties of Pr3+ Doped Na2O–ZnO–TeO2 Glass Materials

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract—

Praseodymium incorporated Na2O–ZnO–TeO2 (NZT) glass materials were prepared through usual melt quenching technique. The temperature of glass transition and the melting point were obtained by using thermal analyses. The amorphous and ionic nature of the prepared samples was obtained from the recorded X-ray diffraction pattern and FTIR spectra respectively. The optical band gap energy was calculated using UV-Vis absorption spectra and was observed to be decreased from 2.86 to 2.46 eV due to the increasing concentration of Pr3+ ions. The peaks of absorption spectra were found. The intense emission was observed from the fluorescence measurement for the emission band of Pr3+ doped glass materials. The doping of higher concentrations of Pr3+ ions enhanced the intensity of the emission peaks. The CIE chromaticity coordinates were estimated from fluorescence spectra for pure and Pr3+ doped glass samples to know the suitability of laser emission of these glass samples. The dielectric constant of the glass materials was observed to be independent of frequency in the large range of frequency (500 Hz to 2 MHz). The variation of conductivity of the glasses was exposed the Arrhenius mechanism of conduction with the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig.6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

REFERENCES

  1. Devi, C.B.A., Mahamuda, S., Venkateswarlu, M., Swapna, K., Rao, A.S., and Prakash, G.V., Dy3+ ions doped single and mixed alkali fluoro-tungsten tellurite glasses for laser and white LED applications, Opt. Mater., 2016, vol. 62, pp. 569–577.

    Article  Google Scholar 

  2. Bergh, A., Craford, G., Duggal, A., and Haitz, R., The promise and challenge of solid-state lighting, Phys. Today, 2001, vol. 54, no. 12, pp. 42–47.

    Article  CAS  Google Scholar 

  3. Park, J.M., Kim, H.J., Kim, S., Limsuwan, P., and Kaewkhao, J., Luminescence property of rare-earth doped bismuth–borate glasses, Proc. Eng., 2012, vol. 32, pp. 855–861.

    Article  CAS  Google Scholar 

  4. Sun, J., Zhang, X., Xia, Z., and Du, H., Luminescent properties of LiBaPO4:RE (RE = Eu2+, Tb3+, Sm3+) phosphors for white light-emitting diodes, J. Appl. Phys., 2012, vol. 111, p. 013101.

  5. Kim, J.S., Jeonny, P.E., Choi, J.C., Park, H.L., Mho, S.I., and Kim, G.C., Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor, Appl. Phys. Lett., 2004, vol. 84, no. 15, pp. 2931–2933.

    Article  CAS  Google Scholar 

  6. Suthanthirakumar, P., Basavapoornima, C., and Marimuthu, K., Effect of Pr3+ ions concentration on the spectroscopic properties of zinc telluro–fluoroborate glasses for laser and optical fiber applications, J. Lumin., 2017, vol. 187, pp. 392–402.

    Article  CAS  Google Scholar 

  7. Hisam, R., Yahya, A.K., Kamari, H.M., Talib, Z.A., and Subban, R.H.Y., Anomalous dielectric constant and AC conductivity in mixed transition-metal-ion xFe2O3–(20 – x)MnO2–80TeO2 glass system, Mater. Express, 2016, vol. 6, no. 2, pp. 149–160.

    Article  CAS  Google Scholar 

  8. Moraes, J.C.S., Nardi, J.A., Sidel, S.M., Mantovani, B.G., Yukimitu, K., Reynoso, V.C.S., Malmonge, L.F., Ghofraniha, N., Ruocco, G., Andrade, L.H.C., and Lima, S.M., Relation among optical, thermal and thermo-optical properties and niobium concentration in tellurite glasses, J. Non-Cryst. Solids, 2010, vol. 356, nos. 41–42, pp. 2146–2150.

    Article  CAS  Google Scholar 

  9. Rajendran, V., Palanivelu, N., Chaudhuri, B.K., and Goswami, K., Characterisation of semiconducting V2O5–Bi2O3–TeO2 glasses through ultrasonic measurements, J. Non-Cryst. Solids, 2003, vol. 320, nos. 1–3, pp. 195–209.

    Article  CAS  Google Scholar 

  10. Al-Hadeethi, Y., Sayyed, M.I., and Tijania, S.A., Gamma radiation attenuation properties of tellurite glasses: A comparative study, Nucl. Eng. Technol., 2019, vol. 51, no. 8, pp. 2005–2012.

    Article  CAS  Google Scholar 

  11. Florencio, L.D.A., Malagón, L.A.G., Lima, B.C., Gomes, A.S.L., Garcia, J.A.M., and Kassab, L.R.P., Efficiency enhancement in solar cells using photon down-conversion in Tb/Yb-doped tellurite glass, Sol. Energy Mater. Sol. Cells, 2016, vol. 157, pp. 468–475.

    Article  CAS  Google Scholar 

  12. Henderson, M.R., Gibson, B.C., Heidepriem, H.E., Kuan, K., Afshar, V.S., Orwa, J.O., Aharonovich, I., Tomljenovic-Hanic, S., Greentree, A.D., Prawer, S., and Monro, T.M., Diamond in tellurite glass: A new medium for quantum information, Adv. Mater., 2011, vol. 23, pp. 2806–2810.

    Article  CAS  Google Scholar 

  13. Hajer, S.S., Halimah, M.K., Azmi, Z., and Azlan, M.N., Optical properties of zinc-borotellurite doped samarium, Chalcogenide Lett., 2014, vol. 11, no. 11, pp. 553–566.

    Google Scholar 

  14. Eraiah, B., Optical properties of samarium doped zinc-tellurite glasses, Bull. Mater. Sci., 2006, vol. 29, no. 4, pp. 375–378.

    Article  CAS  Google Scholar 

  15. Munishwar, S.R., Roy, K., and Gedam, R.S., Photolumincence study of Sm3+ containing sodium borosilicate glasses and glass-ceramics, Mater. Res. Express, 2017, vol. 4, no. 10, p. 105201.

    Article  Google Scholar 

  16. Stambouli, W., Elhouichet, H., Gelloz, B., and Ferid, M., Optical and spectroscopic properties of Eu-doped tellurite glasses and glass ceramics, J. Lumin., 2013, vol. 138, pp. 201–208.

    Article  CAS  Google Scholar 

  17. Gedam, R.S. and Ramteke, D.D., Electrical and optical properties of lithium borate glasses doped with Nd2O3, J. Rare Earths, 2012, vol. 30, no. 8, pp. 785–789.

    Article  CAS  Google Scholar 

  18. Ramteke, D.D., Annapurna, K., Deshpande, V.K., and Gedam, R.S., Effect of Nd3+ on spectroscopic properties of lithium borate glasses, J. Rare Earths, 2014, vol. 32, no. 12, pp. 1148–1153.

    Article  CAS  Google Scholar 

  19. Lurin, C., Parent, C., Flem, G.L., and Hagenmuller, P., Energy transfer in a Nd3+-Yb3+ borate glass, J. Phys. Chem. Solids, 1985, vol. 46, no. 9, pp. 1083–1092.

    Article  CAS  Google Scholar 

  20. Surana, S.S.L., Sharma, Y.K., and Tandon, S.P., Laser action in neodymium-doped zinc chloride borophosphate glasses, Mater. Sci. Eng. B, 2001, vol. 83, pp. 204–209.

    Article  Google Scholar 

  21. Babu, P., Jang, K.H., and Kim, E.S., Optical properties and white-light emission in Dy3+-doped transparent oxy-fluoride glass and glass ceramics containing CaF2 nano-crystals, J. Korean Phys. Soc., 2009, vol. 54, no. 4, pp. 1488–1491.

    Article  CAS  Google Scholar 

  22. Zhang, F., Bi, Z., Huang, A., and Xiao, Z., Luminescence and Judd–Ofelt analysis of the Pr3+ doped fluorotellurite glass, J. Lumin., 2015, vol. 160, pp. 85–89.

    Article  Google Scholar 

  23. Rai, V.K., Rai, D.K., and Rai, S.B., Pr3+ doped lithium tellurite glass as a temperature sensor, Sens. Actuators, A, 2006, vol. 128, no. 1, pp. 14–17.

    Article  CAS  Google Scholar 

  24. Mahraz, Z.A.S., Sahar, M.R., and Ghoshal, S.K., Band gap and polarizability of boro-tellurite glass: Influence of erbium ions, J. Mol. Struct., 2014, vol. 1072, pp. 238–241.

    Article  Google Scholar 

  25. Kalampounias, A.G., Tsilomelekis, G., and Boghosian, S., Glass-forming ability of TeO2 and temperature induced changes on the structure of the glassy, supercooled and molten states, J. Chem. Phys., 2015, vol. 142, no. 15, p. 154503.

    Article  CAS  Google Scholar 

  26. Badamasi, S., and Tanko, Y.A., Thermal properties of TeO2–ZnO–Na2O glasses: Effect of Dy2O3 doping, Sci. World J., 2018, vol. 13, no. 4, pp. 95–99.

    Google Scholar 

  27. Baki, S.O., Tan, L.S., Kan, C.S., Kamari Noor, A.S.M., and Mahdi, M.A., Structural and optical properties of Er3+–Yb3+ codoped multicomposition, J. Non-Cryst. Solids, 2013, vol. 362, pp. 156–161.

    Article  CAS  Google Scholar 

  28. Wang, M., Wang, G., Hu, L., and Zhang, J., 2-μm fluorescence and Raman spectra in high and low Al (PO3)3 content fluorophosphate glasses doped with Er—Tm–Ho, Chin. Opt. Lett., 2009, vol. 7, no. 11, pp. 1035–1037.

    Article  CAS  Google Scholar 

  29. Cabral, A.A., Fredericci, C., and Zanotto, E.D., A test of the hruby parameter to estimate glass forming ability, J. Non-Cryst. Solids, 1997, vol. 219, pp. 182–186.

    Article  CAS  Google Scholar 

  30. Khalil, M.I., Al-Qunaibit, M.M., Al-zahem, A.M., and Labis, J.P., Synthesis and characterization of ZnO nanoparticles by thermal decomposition of a curcumin zinc complex, Arab. J. Chem., 2014, vol. 7, no. 6, pp. 1178–1184.

    Article  CAS  Google Scholar 

  31. Shaalan, M., El-Damrawi, G., Hassan, A., and Misbah, M.H., Structural role of Nd2O3 as a dopant material in modified borate glasses and glass ceramics, J. Mater. Sci.: Mater. Electron., 2021, vol. 32, no. 9, pp. 12348–12357.

    CAS  Google Scholar 

  32. Gallerande, J.D.C., Taniguchi, D., Colas, M., Thomas, P., and Hayakawa, T., Influence of Nd3+ modifying on 80TeO2 – xZnO–(20 – x)Na2O ternary glass system, APL Mater., 2021, vol. 9, no. 11, pp. 1–17.

    Google Scholar 

  33. de Clermont-Gallerande, J., Taniguchi, D., Colas, M., Thomas, P., and Hayakawa, T., High-temperature investigation of TeO2–Na2O–ZnO glasses, Phys. Status Solidi B, 2022, vol. 259, no. 9, p. 2200065.

  34. Elkhoshkhany, N., Khatab, M.A., and Kabary, M.A., Thermal, FTIR and UV spectral studies on tellurite glasses doped with cerium oxide, Ceram. Int., 2018, vol. 44, no. 3, pp. 2789–2796.

    Article  CAS  Google Scholar 

  35. Elkhoshkhany, N., Marzouk, S.Y., Khattab, M.A., and Dessouki, S.A., Influence of Sm2O3 addition on Judd-Ofelt parameters, thermal and optical properties of the TeO2–Li2O–ZnO–Nb2O5 glass system, Mater. Charact., 2018, vol. 144, pp. 274–286.

    Article  CAS  Google Scholar 

  36. Sayyed, M.I., Ati, A.A., Mhareb, M.H.A., Mahmoud, K.A., Kaky, K.M., Baki, S.O., and Mahdi, M.A., Novel tellurite glass (60 – x)TeO2–10GeO2–20ZnO–10BaO–xBi2O3 for radiation shielding, J. Alloys Compd., 2020, vol. 844, p. 155668.

    Article  CAS  Google Scholar 

  37. Mansour, E., FTIR spectra of pseudo-binary sodium borate glasses containing TeO2, J. Mol. Struct., 2012, vol. 1014, pp. 1–6.

    Article  CAS  Google Scholar 

  38. Bezrodna, T., Puchkovska, G., Shymanovska, V., Baran, J., and Ratajczak, H., IR-analysis of H-bonded H2O on the pure TiO2 surface, J. Mol. Struct., 2004, vol. 700, nos. 1–3, pp. 175–181.

    Article  CAS  Google Scholar 

  39. Fong, W.L., Baki, S.O., Arifin, N.M., Mansor, Y., Nazri, A., and Abbas, B.K., Structural, thermal and optical properties of rare earth doped leadtellurite oxide glasses, J. Adv. Res. Fluid Mech. Therm. Sci., 2021, vol. 81, no. 2, pp. 52–58.

    Google Scholar 

  40. Kalampounias, A.G., Tsilomelekis, G., and Boghosian, S., Glass-forming ability of TeO2 and temperature induced changes on the structure of the glassy, supercooled, and molten, J. Chem. Phys., 2015, vol. 142, no. 15, p. 154503.

    Article  CAS  Google Scholar 

  41. Bashar, K.A., Lakshminarayana, G., Baki, S.O., Mohammed, A.B.F.A., Caldino, U., Rocha, A.N.M., Singh, V., Kityk, I.V., and Mahdi, M.A., Tunable white-light emission from Pr3+/Dy3+ co-doped B2O3–TeO2–PbO–ZnO–Li2O–Na2O glasses, Opt. Mater., 2019, vol. 88, pp. 558–569.

    Article  CAS  Google Scholar 

  42. Haritha, B., Prasad, V.R., Damodaraiah, S., and Ratnakaram, Y.C., Spectroscopic properties of Pr3+ ions embedded in different multi component phosphate glasses, Am. J. Eng. Res., 2017, vol. 6, no. 7, pp. 315–322.

    Google Scholar 

  43. Bodył, S., Czaja, M., and Mazurak, Z., Optical properties of Pr3+, Sm3+ and Er3+ ions in apatite, fluorite and phosphate glasses, Phys. Procedia, 2009, vol. 2, no. 2, pp. 515–525.

    Article  Google Scholar 

  44. Vijayalakshmi, L., Naresh, V., Rudramadevi, B.H., and Buddhudu, S., Emission analysis of Pr3+ & Dy3+ ions doped Li2O–LiF–B2O3–ZnO glasses, Int. J. Eng. Sci., 2014, vol. 4, no. 9, pp. 19–25.

    CAS  Google Scholar 

  45. Annapurna, K., Chakrabarti, R., and Buddhudu, S., Absorption and emission spectral analysis of Pr3+: tellurite glasses, J. Mater. Sci., 2007, vol. 42, no. 16, pp. 6755–6761.

    Article  CAS  Google Scholar 

  46. Carnall, W.T., Fields, P.R., and Rajnak, K., Electronic energy levels of the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, HO3+, Er3+, and Tm3+, J. Chem. Phys., 1968, vol. 49, no. 10, pp. 4424–4442.

    Article  CAS  Google Scholar 

  47. Kolavekar, S.B., Ayachit, N.H., and Anavekar, R.V., Characterization and optical properties of Pr2O3-doped molybdenum lead-borate glasses, Bull. Mater. Sci., 2017, vol. 40, no. 3, pp. 523–526.

    Article  CAS  Google Scholar 

  48. Kesavulu, C.R., Chakradhar, R.P.S., Jayasankar, C.K., and Rao, J.L., EPR, optical, photoluminescence studies of Cr3+ ions in Li2O–Cs2O–B2O3 glasses-an evidence of mixed alkali effect, J. Mol. Struct., 2010, vol. 975, pp. 93–99.

    Article  CAS  Google Scholar 

  49. Upender, G., Ramesh, S., Prasad, M., Sathe, V.G., and Mouli, V.C., Optical band gap, glass transition temperature and structural studies of (100 – 2 x)TeO2xAg2O–xWO3 glass system, J. Alloys Compd., 2010, vol. 504, no. 2, pp. 468–474.

    Article  CAS  Google Scholar 

  50. Mawlud, S.Q., Ameen, M.M., Sahar, M.R., Yusof, N.M., Ahmed, K.F., and Tanko, Y.A., Absorption and luminescence spectral properties study of Sm3+ doped TeO2–Na2O glasses, in Proceedings of the International Scientific Postgraduate Conference, 2016, pp. 1–10.

  51. Mahraz, Z.A.S., Sahar, M.R., Ghoshal, S.K., and Dousti, M.R., Concentration dependent luminescence quenching of Er3+-doped zinc boro-tellurite glass, J. Lumin., 2013, vol. 144, pp. 139–145.

    Article  Google Scholar 

  52. Dimitrov, V. and Sakka, S., Electronic oxide polarizability and optical basicity of simple oxides. I, J. Appl. Phys., 1996, vol. 79, no. 3, pp. 1736–1740.

    Article  CAS  Google Scholar 

  53. Shaari, H.R., Azlan, M.N., Azlina, Y., Hajer, S.N., Nazrin, S.S., Umar, S.A., Kenzhaliyev, B.K., Boukhris, I., and Hada, N.M.A., Investigation of structural and optical properties of graphene oxide coated neodymium nanoparticles doped zinc-tellurite glass for glass fiber, J. Inorg. Organomet. Polym. Mater., 2021, vol. 31, no. 11, pp. 4349–4359.

    Article  CAS  Google Scholar 

  54. Kolavekar, S.B. and Ayachit, N.H., Impact of Pr2O3 on the physical and optical properties of multi-component borate glasses, Mater. Chem. Phys., 2021, vol. 257, p. 123796.

  55. Ramteke, D.D., Ganvir, V.Y., Munishwar, S.R., and Gedam, R.S., Concentration effect of Sm3+ ions on structural and luminescence properties of lithium borate glasses, Phys. Procedia, 2015, vol. 76, pp. 25–30.

    Article  CAS  Google Scholar 

  56. Mandal, D., Banerjee, H.D., Goswami, M.N., and Acharya, H.N., Synthesis of Er3+ and Er3+:Yb3+ doped sol-gel derived silica glass and studies on their optical properties, Bull. Mater. Sci., 2004, vol. 27, no. 4, pp. 367–372.

    Article  CAS  Google Scholar 

  57. Suhasini, T., Kumar, J.S., Sasikala, T., Jang, K., Lee, H.S., Jayasimhadri, M., Jeong, J.H., Yi, S.S., and Moorthy, L.R., Absorption and fluorescence properties of Sm3+ ions in fluoride containing phosphate glasses, Opt. Mater., 2009, vol. 31, pp. 1167–1172.

    Article  CAS  Google Scholar 

  58. Maheshvaran, K., Arunkumar, S., Krishnaiah, K.V., and Marimuthu, K., Investigations on luminescence behavior of Er3+/Yb3+ co-doped boro-tellurite glasses, J. Mol. Struct., 2015, vol. 1079, pp. 130–138.

    Article  CAS  Google Scholar 

  59. Kumar, M.V.V., Gopal, K.R., Reddy, R.R., Reddy, G.V.L., Hussain, N.S., and Jamalaiah, B.C., Application of modified Judd–Ofelt theory and the evaluation of radiative properties of Pr3+-doped lead telluroborate glasses for laser applications, J. Non-Cryst. Solids, 2013, vol. 364, pp. 20–27.

    Article  CAS  Google Scholar 

  60. Marzouk, M.A., Elkashef, I.M., Fayad, A.M., and Elbatal, H.A., Photoluminescence, optical and structural properties of Pr3+- doped fluoro-phosphate glasses and their induced defects by gamma irradiation, J. Mater. Sci. Mater. Electron., 2018, vol. 29, no. 12, pp. 10561–10572.

    Article  CAS  Google Scholar 

  61. Kaewjaeng, S., Boonpa, W., Khrongchaiyaphum, F., Kothan, S., Kim, H.J., Intachai, N., Rajaramakrishna, R., Kiatwattanacharoen, S., and Kaewkhao, J., Influence of trivalent praseo-dymium ion on SiO2–B2O3–Al2O3–BaO–CaO–Sb2O3–Na2O–Pr2O3 glasses for X-rays shielding and luminescence materials, Radiat. Phys. Chem., 2021, vol. 184, p. 109467.

  62. Zhou, B., Tao, V., Tsang, Y.H., Jin, W., and Pun, E.Y.B., Super broadband near-IR photolu-minescence from Pr3+-doped fluorite tellurite glasses, J. Opt. Soc. Am., 2012, vol. 20, pp. 3803–3813.

    CAS  Google Scholar 

  63. Rajesh, D., Dousti, M.R., Amjad, R.J., and Camargo, A.S.S.D., Quantum cutting and upconversion investigations in Pr3+/Yb3+ co-doped oxyfluoro-tellurite glasses, J. Non-Cryst. Solids, 2016, vol. 450, pp. 149–155.

    Article  CAS  Google Scholar 

  64. Gonzalez, L.J.B., Galleani, G., Manzani, D., Nunes, L.A.O., and Ribeiro, S.J.L., Visible to infraredenergy conversion in Pr3+-Yb3+ co-doped fluoroindate glasses, Opt. Mater., 2013, vol. 35, pp. 2085–2089.

    Article  Google Scholar 

  65. Żur, L., Janek, J., Sołtys, M., Pisarska, J., Pisarski, W.A., and Ballato, J., Effect of BaF2 content on luminescence of rare-earth ions in borate and germanate glasses, J. Am. Ceram. Soc., 2016, vol. 99, no. 6, pp. 2009–2016.

    Article  Google Scholar 

  66. Wei, T., Bo, W., Yan, C., Yeqing, C., Jun, L., and Qingguang, Z., Single Pr3+ -activated high-color-stability fluoride white-light phosphor for white-light-emitting diodes, Opt. Mater. Express, 2019, vol. 9, no. 1, pp. 223–233.

    Article  CAS  Google Scholar 

  67. Ibrahim, S.E., Rammah, Y.S., Hager, I.Z., and El-Mallawany, R., UV and electrical properties of TeO2–WO3–Li2O–Nb2O5/Sm2O3/Pr6O11/Er2O3 glasses, J. Non-Cryst. Solids, 2018, vol. 498, pp. 443–447.

    Article  CAS  Google Scholar 

  68. Khater, G.A., Nabawy, B.S., Kang, J., and Mahmoud, M.A., Dielectric properties of basaltic glass and glass-ceramics: Modeling and applications as insulators and semiconductors, Silicon, 2019, vol. 11, no. 2, pp. 579–592.

    Article  CAS  Google Scholar 

  69. Zulkefly, S.S., Kamari, H.M., Azis, M.N.A., A., and Yusoff, W.M.D.W., Influence of erbium doping on dielectric properties of zinc borotellurite glass system, Mater. Sci. Forum, 2016, vol. 846, pp. 161–171.

    Article  Google Scholar 

  70. Vasumathy, D.A., Murugasen, P., and Sagadevan, S., Preparation and characterization of the structural, optical, spectroscopic and electrical properties of Pr2O5 doped borate glass, Mater. Res., 2016, vol. 19, no. 4, pp. 923–927.

    Article  CAS  Google Scholar 

  71. Malge, A., Sankarappa, T., Devidas, G.B., Ashwajeet, J.S., Devidas, A., and Heerasingh, M., Dielectric and relaxation studies in multi oxides doped borotellurite glasses, IOP Conf. Ser.: Mater. Sci. Eng., 2022, vol. 1221, p. 012015.

  72. Mirdda, J.N., Mukhopadhyay, S., Sahu, K.R., and Goswami, M.N., Enhancement of optical emission and dielectric properties of Eu3+-doped Na2O–ZnO–TeO2 glass material, Glass Phys. Chem., 2020, vol. 46, no. 3, pp. 218–227.

    Article  CAS  Google Scholar 

  73. Mirdda, J.N., Mukhopadhyay, S., Sahu, K.R., and Goswami, M.N., Optical and electrical properties of Nd3+ doped Na2O–ZnO–TeO2 material, Biointerface Res. Appl. Chem., 2022, vol. 12, no. 6, pp. 7927–7941.

    CAS  Google Scholar 

  74. Li, H.M., Ra, C.H., Zhang, G., and Yoo, W.J., Frequency and temperature dependence of the dielectric properties of a PCB substrate for advanced packaging applications, J. Korean Phys. Soc., 2009, vol. 54, no. 3, pp. 1096–1099.

    Article  CAS  Google Scholar 

  75. Mirdda, J.N., Mukhopadhyay, S., Sahu, K.R., and Goswami, M.N., Enhancement of optical properties and dielectric nature of Sm3+ doped Na2O–ZnO–TeO2 glass materials, J. Phys. Chem. Solids, 2022, vol. 167, p. 110776.

    Article  CAS  Google Scholar 

  76. Ali, A.A. and Shaaban, M.H., Electrical properties of LiBBaTe glass doped with Nd2O3, Solid State Sci., 2010, vol. 12, no. 12, pp. 2148–2154.

    Article  CAS  Google Scholar 

  77. Ashwajeet, J.S. and Sankarappa, T., Dielectric and AC conductivity studies in Li2O–CoO–B2O3–TeO2 glasses, Ionics, 2017, vol. 23, no. 3, pp. 627–636.

    Article  CAS  Google Scholar 

  78. Graca, M.P.F., Fawzy, H., Badr, Y., Elokr, M.M., Nico, C., Soares, R., Costa, L.C., and Valente, M.A., Electrical, dielectric and structural properties of boro-vanadate glass systems doped with samarium oxide, Phys. Status Solidi C, 2011, vol. 8, nos. 11–12, pp. 3107–3110.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors want to thank the CRF, IIT Kharagpur for providing facilities to study DTA and TGA. The authors desire to give thanks to Jadavpur University for providing facilities to study FTIR. The work is partly maintained by DST Govt. of West Bengal research project (Memo no. 296 (Sanc)/ST/P/S&T/16G-17/2017) of India.

Funding

The work was partly supported by DST Government of West Bengal, India, research project no. 296 (Sanc)/ST/P/S&T/16G-17/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Goswami.

Ethics declarations

The author declares that he (she) has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirdda, J.N., Mukhopadhyay, S., Sahu, K.R. et al. Enhancement of Optical and Electrical Properties of Pr3+ Doped Na2O–ZnO–TeO2 Glass Materials. Glass Phys Chem 49, 442–455 (2023). https://doi.org/10.1134/S108765962360045X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765962360045X

Keywords:

Navigation