Skip to main content
Log in

Comparative Study of the Structure and Properties of Composite Materials Produced From Hydroxyapatite Glass Ceramics and Carbon Fibers of Different Types

  • COMPOSITE MATERIALS
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

A comparative study of the structure and properties of composite materials produced from biogenic hydroxyapatite/glass/carbon fibers, depending on the type of carbon fibers (activated carbon nanostructured fibers or cellulose fibers), was conducted employing scanning electron microscopy, X-ray diffraction, infrared spectroscopy, Brunauer–Emmett–Teller method, helium pycnometry, and in vitro experiments. The potential to produce a biogenic hydroxyapatite/glass/carbon fiber composite by sintering at 800°C, involving the simultaneous formation of carbon nanostructures during thermal destruction and carbonization of cellulose fibers, was ascertained. This method allows preserving the hydroxyapatite phase in the newly formed biogenic hydroxyapatite/glass/carbon fiber composite and ensures the presence of carbon nanostructures. The microstructure of the composites produced with activated carbon nanostructured fibers is characterized by the presence of these fibers, contrastingly to the composite produced with cellulose fibers, which has more homogeneous microstructure. Moreover, as opposed to cellulose fibers, activated carbon nanostructured fibers in the composite significantly increase (by more than three times) the specific surface area of the material and significantly reduce the particle size. Regardless of the carbon fibers used, the biogenic hydroxyapatite/glass/carbon fiber composites are nanostructured and microporous (pores < 2 nm). The resorption rate of the biogenic hydroxyapatite/glass/carbon (activated nanostructured or hydrated cellulose) fiber composites in the physiological solution within the first two days is significantly higher than that of the starting biogenic hydroxyapatite/glass composites because of changes in the porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. A. Yelten and S. Yilmaz, “A novel approach on the synthesis and characterization of bioceramic composites,” Ceram. Int., 45, Issue 12, 15375–15384 (2019).

    Article  CAS  Google Scholar 

  2. E. Kalantari and S.M. Naghib, “A comparative study on biological properties of novel nanostructured monticellite-based composites with hydroxyapatite bioceramic,” Mater. Sci. Eng. C, 98, 1087–1096 (2019).

    Article  CAS  Google Scholar 

  3. Shuai-Bin Hua, Jin Su, Ze-Lin Deng, Jia-Min Wu, Li-Jin Cheng, Xi Yuan, Fen Chen, Hao Zhu, Da-Hu Qi, Jun Xiao, and Yu-Sheng Shi, “Microstructures and properties of 45S5 bioglass® & BCP bioceramic scaffolds fabricated by digital light processing,” Addit. Manuf., 45, 102074 (2021).

    CAS  Google Scholar 

  4. Z. Catalgol, “Sintering effect on borosilicate glass-bovine hydroxyapatite composites,” J. Aust. Ceram. Soc., No. 55, 1075–1079 (2019).

  5. J.A. Rincón-López, J.A. Hermann-Muñoz, N. Cinca-Luis, B. Garrido-Domiguez, I. García-Cano, J.M. Guilemany-Casadamon, J.M. Alvarado-Orozco, and J. Muñoz-Saldaña, “Preferred growth orientation of apatite crystals on biological hydroxyapatite enriched with bioactive glass: A biomimetic behavior,” J. Cryst. Growth Des., 19, No. 9, 5005–5018 (2019).

    Article  Google Scholar 

  6. Mondal Sudip, Giang Hoang, Panchanathan Manivasagan, Madhappan Santha Moorthy, Thanh Phuoc Nguyen, Thi Tuong Vy Phan, Hye Hyun Kim, Myoung Hwan Kim, Seung Yun Nam, and Junghwan Oh, “Nano-hydroxyapatite bioactive glass composite scaffold with enhanced mechanical and biological performance for tissue engineering application,” Ceram. Int., 44, Issue 13, 15735–15746 (2018).

    Google Scholar 

  7. F. Sharifianjazi, A. Esmaeilkhanian, M. Moradi, A. Pakseresht, M. ShahediAsl, H. Karimi-Maleh, H. Won Jang, M. Shokouhimehr, and R.S. Varma, “Biocompatibility and mechanical properties of pigeon bone waste extracted natural nanohydroxyapatite for bone tissue engineering,” Mater. Sci. Eng. B, No. 264, 114950 (2021).

  8. M. Korzh, N. Dedukh, O. Tyazhelov, and L. Chzhou, “Experimental-clinical study of carbon biomaterials application in orthopedics and traumatology (literature review),” Orthop. Traumatol. Prosthet., No. 2, 114– 121 (2017).

  9. N. Saito, K. Aoki, Y. Usui, M. Shimizu, K. Hara, N. Narita, N. Ogihara, K. Nakamura, N. Ishigaki, H. Kato, H. Haniu, S. Taruta, Y.A. Kimd, and M. Endod, “Application of carbon fibers to biomaterials: A new era of nano-level control of carbon fibers after 30-years of development,” Chem. Soc. Rev., No. 40, 3824–3834 (2011).

  10. I.S. Moroz, S.I. Bibichenko, V.I. Tarasenko, and O.L. Borodai, “First experience in using carbon–carbon composite for the plastic repair of skull defects,” Viysk. Med. Ukr., 9, No. 1, 43–48 (2009).

    Google Scholar 

  11. N. Dedukh, M. Karpinsky, L. Chzhou, and S. Malyshkina, “Regeneration and mechanical strength of bone in the implantation conditions of carbon material,” Orthop. Traumatol. Prosthet., No. 3, 41–47 (2016).

  12. I. Zhitomirsky, “Electrophoretic hydroxyapatite coatings and fibers,” Mater. Lett., No. 42, 262–271 (2000).

  13. J.-L. Sui, M.-S. Lia, Y.-P. Lu, L.-W. Yin, and Y.-J. Song, “Plasma-sprayed hydroxyapatite coatings on carbon/carbon composites,” Surf. Coat. Technol., No. 176, 188–192 (2004).

  14. S.R. Sandeman, H. Jeffery, C.A. Howell, M. Smith, S.V. Mikhalovsky, and A.W. Lloyd, “The in vitro corneal biocompatibility of hydroxyapatite coated carbon mesh,” Biomaterials, No. 30, 3143–3149 (2009).

    Article  CAS  Google Scholar 

  15. X. Wang, X. Zhao, W. Wang, J. Zhang, L. Zhang, F. He, and J. Yang, “Controllable preparation of a nanohydroxyapatite coating on carbon fibers by electrochemical deposition and chemical treatment,” Mater. Sci. Eng., No. 63, 96–105 (2016).

  16. Q. Liu, C. Zhang, Y. Bao, and G. Dai, “Carbon fibers with a nano-hydroxyapatite coating as an excellent biofilm support for bioreactors,” Appl. Surf. Sci., No. 443, 255–265 (2018).

  17. Y. Liu, L. Zhang, L. Pei, and H. Sheng, “Improved corrosion resistance of hydroxyapatite coating on carbon fiber by applying SiC interlayer,” Appl. Surf. Sci., No. 512, 145692 (2020).

  18. N.A. Asante, Y. Wang, S. Bakhet, S. Kareem, K.A. Owusu, Y. Hu, and M. Appiah, “Ambient temperature sulfonated carbon fiber reinforced PEEK with hydroxyapatite and reduced graphene oxide hydroxyapatite composite coating,” J. Biomed. Mater. Res., No. 109, 2174–2183 (2021).

  19. A. Slusarczyk, M. Klisch, M. Blazewicz, J. Piekarczyk, L. Stobierski, and A. Rapacz-Kmita, “Hot pressed hydroxyapatite-carbon fiber composites,” J. Eur. Ceram. Soc., No. 20, 1397–1402 (2000).

  20. A. Dorner-Reisel, K. Berroth, R. Neubauer, K. Nestler, G. Marx, M. Scislo, E. Muller, and A. Slosarcyk, “Unreinforced and carbon fiber reinforced hydroxyapatite: resistance against microabrasion,” J. Eur. Ceram. Soc., No. 24, 2131–2139 (2004).

  21. S. Kobayashi and W. Kawai, “Development of carbon nanofiber reinforced hydroxyapatite with enhanced mechanical properties,” Compos. Part A, No. 38, 114–123 (2007).

    Article  Google Scholar 

  22. X. Zhao, L. Zhang, X. Wang, J. Yang, F. He, and Y. Wang, “Preparation and mechanical properties of controllable orthogonal arrangement of carbon fiber reinforced hydroxyapatite composites,” Ceram. Int., No. 44, 8322–8333 (2018).

  23. X. Zhao, X. Chen, Z. Gui, J. Zheng, P. Yang, A. Liu, S. Wei, and Z. Yang, “Carbon fiber reinforced hydroxyapatite composites with excellent mechanical properties and biological activities prepared by spark plasma sintering,” Ceram. Int., No. 46, 27446–27456 (2020).

  24. T. Mikołajczyk, G. Szparaga, S. Rabiej, and A. Frączek-Szczypta, “Influence of formation conditions on the structure and properties of nanocomposite PAN fibers containing silver and hydroxyapatite nanoadditives,” Fibres Text. East. Eur., 18, No. 5 (82), 16 (2010).

  25. X. Zhao, Z. Yang, Q. Liu, P. Yang, P. Wang, S. Wei, A. Liu, and Z. Zhao, “Potential load-bearing bone substitution material: Carbon-fiber-reinforced magnesium-doped hydroxyapatite composites with excellent mechanical performance and tailored biological properties,” ACS Biomater. Sci. Eng., No. 8, 921−938 (2022).

  26. Z. Deng, H. Han, J. Yang, Y. Li, S. Du, and J. Ma, “Fabrication and characterization of carbon fiberreinforced nano-hydroxyapatite/polyamide biocomposite for bone substitute,” Med. Sci. Monit., No. 23, 2479–2487 (2017).

  27. I.S. Jeon, M.H. Lee, H.-H. Choi, S. Lee, J.W. Chon, D.J. Chung, J.H. Park, and J.Y. Jho, “Mechanical properties and bioactivity of polyetheretherketone/hydroxyapatite/carbon fiber composite prepared by the mechanofusion process,” Polymers, No. 13, 1978 (2021).

    CAS  Google Scholar 

  28. M. Wu, Q. Wang, X. Liu, and H. Liu, “Biomimetic synthesis and characterization of carbon nanofiber/hydroxyapatite composite scaffolds,” Carbon, No. 51, 335–345 (2013).

    Article  CAS  Google Scholar 

  29. Q. Picard, F. Olivier, S. Delpeux, J. Chancolon, F. Warmont, and S. Bonnamy, “Development and characterization of biomimetic carbonated calcium-deficient hydroxyapatite deposited on carbon fiber scaffold,” J. Carbon Res., No. 4, 25 (2018).

  30. F. Olivier, Q. Picard, S. Delpeux-Ouldriane, J. Chancolon, F. Warmont, V. Sarou-Kanian, F. Fayon, and S. Bonnamy, “Influence of electrochemical parameters on the characteristics of sonoelectrodeposited calcium phosphate-coated carbon fiber cloth,” Surf. Coat. Technol., 389, 125507 (2020).

    Article  CAS  Google Scholar 

  31. F. Olivier, S. Bonnamy, N. Rochet, and C. Drouet, “Activated carbon fiber cloth/biomimetic apatite: A dual drug delivery system,” Int. J. Mol. Sci., No. 22, 12247 (2021).

  32. O.V. Shcherbytska, V.V. Garbuz, V.D. Klipov, V.P. Sergeev, I.V. Kononko, V.M. Klevtsov, T.F. Lobunets, and I.V. Uvarova, “Research into the formation of carbon nanostructures in thermal destruction and carbonization of hydrated cellulose fibers,” Nanostrukt. Materialoved., No. 2, 24–31 (2010).

  33. A.M. Cakmak, S. Unal, A. Sahin, F.N. Oktar, M. Sengor, N. Ekren, O. Gunduz, and D.M. Kalaskar, “3D printed polycaprolactone/gelatin/bacterialcellulose/hydroxyapatite composite scaffold for bone tissue engineering,” Polymers, No. 12, 1962–1973 (2020).

    Article  CAS  Google Scholar 

  34. K. Azzaoui, E. Mejdoubi, A. Lamhamdi, S. Jodeh, O. Hamed, M. Berrabah, S. Jerdioui, R. Salghi, N. Akartasse, A. Errich, Á. Ríos, and M. Zougagh, “Preparation and characterization of biodegradable nanocomposites derived from carboxymethylcellulose and hydroxyapatite,” Carbohydr. Polym., 167, 59–69 (2017).

    Article  CAS  Google Scholar 

  35. J. Grande Cristian, G. Torres Fernando, M. Gomez Clara, and M. Carmen Bañó, “Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications,” Acta Biomater., 5, Issue 5, 1605–1615 (2009).

  36. M. Oprea and S.I. Voicu, “Recent advances in applications of cellulose derivatives-based composite membranes with hydroxyapatite,” Materials, No. 13, 2481 (2020).

    CAS  Google Scholar 

  37. O.R. Parkhomei, N.D. Pinchuk, O.E. Sych, T.V. Tomila, G.B. Tovstonog, V.F. Gorban’, Y.I. Yevych, and O.A. Kuda, “Structural and mechanical properties of bioactive glass–ceramic composites,” Powder Metall. Met. Ceram., 55, No. 3–4, 172–184 (2016).

  38. O. Parkhomey, N. Pinchuk, O. Sych, T. Tomila, O. Kuda, H. Tovstonoh, V. Gorban, V. Kolesnichenko, and Y. Evych, “Effect of particle size of starting materials on the structure and properties of biogenic hydroxyapatite/glass composites,” Proc. Appl. Ceram., 10, No. 1, 1–8 (2016).

    Article  CAS  Google Scholar 

  39. I.V. Kononko, V.P. Sergeev, O.V. Shcherbytska, V.D. Klipov, and N.V. Kononko, “Carbon nanostructured materials: toxicity and biocompatibility,” Visn. UMT, No. 1 (8), 58–67 (2015).

    Google Scholar 

  40. O.R. Parkhomey, V.D. Klipov, N.D. Pinchuk, T.V. Tomila, O.I. Bykov, O.E. Sych, L.M. Kuzmenko, and O.M. Budilina, “Composites produced from hydroxyapatite glass ceramics and carbon nanostructured fibers: preparation, phase composition, and structure,” Powder Metall. Met. Ceram., 61, 5–6, 308–315 (2022).

    Article  CAS  Google Scholar 

  41. C. Qiang, J. Xu, Z. Zhang, L. Tian, S. Xiao, Y. Liu, and P. Xu, “Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles,” J. Alloys Compd., 506, 93–97 (2010).

    Article  CAS  Google Scholar 

  42. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, Inc., New Jersey (2009), p. 408.

    Google Scholar 

  43. N.A. Alarfaj, M.F. El-Tohamy, and H.F. Oraby, “CA 19-9 pancreatic tumor marker. Fluorescence immunosensing detection via immobilized carbon quantum dots conjugated gold nanocomposite,” Int. J. Mol. Sci., 19, 1162–1177 (2018).

    Article  Google Scholar 

  44. S.J. Gregg and K.S.W. Sing, Adsorption, Surface Area, & Porosity, 2nd ed., Academic Press (1982), p. 303, ISBN-10: 0123009561, ISBN-13: 978-0123009562.

  45. A.D. McNaught and A. Wilkinson, Compendium of Chemical Terminology, IUPAC Recommendations, 2nd ed. (2019), http://www.iupac.org/, DOI: https://doi.org/10.1351/goldbook.

  46. O. Sych, N. Pinchuk, A. Parkhomey, A. Kuda, L. Ivanchenko, V. Skorokhod, O. Vasylkiv, O. Getman, and Y. Sakka, “Morphology and properties of new porous biocomposites based on biogenic hydroxyapatite and synthetic calcium phosphates,” Funct. Mater., 14, No. 4, 430–435 (2007).

    CAS  Google Scholar 

  47. I. Rajzer, E. Menaszek, L. Bacakova, M. Rom, and M. Blazewicz, “In vitro and in vivo studies on biocompatibility of carbon fibers,” J. Mater. Sci.: Mater. Med., No. 21, 2611–2622 (2010).

  48. N. Pinchuk, O. Parkhomey, and O. Sych, “In vitro investigation of bioactive glass-ceramic composites based on biogenic hydroxyapatite or synthetic calcium phosphates,” Nanoscale Res. Lett., No. 12, 111 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Pinchuk.

Additional information

Translated from Poroshkova Metallurgiya, Vol. 62, Nos. 3–4 (550), pp. 88–101, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parkhomey, O.R., Klipov, V.D., Sych, O.E. et al. Comparative Study of the Structure and Properties of Composite Materials Produced From Hydroxyapatite Glass Ceramics and Carbon Fibers of Different Types. Powder Metall Met Ceram 62, 203–214 (2023). https://doi.org/10.1007/s11106-023-00384-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-023-00384-3

Keywords

Navigation