Skip to main content
Log in

Molecular mechanism of selective adsorption and separation of n-butane/i-butane on MFI zeolite

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

MFI zeolite is one of the most attractive molecular sieve materials for selective adsorption and separation of C4 hydrocarbon isomers. Grand Canonical Monte Carlo and molecular dynamics simulations were used to explore the correlation between the channel structure, adsorption thermodynamics, and kinetic behavior of butane isomers. The results of single component and binary competitive adsorption isotherms of n-butane/i-butane at 273 K, 303 K, 343 K, and 373 K showed excellent low pressure loading and adsorption selectivity for n-butane on MFI zeolite. Density distribution maps and Radial Distribution Function data revealed different preferential adsorption sites for n-butane and i-butane molecules in MFI zeolite. Because of van der Waals repulsion, the adsorption energy of i-butane is less than that of n-butane, making i-butane less apt to be adsorbed in the sinusoidal and straight channels but preferentially in the cross channel of MFI zeolite. Additionally, the mean square displacement and the calculated diffusion coefficient showed that the diffusion rate of n-butane is faster than that of i-butane by more than two orders of magnitude. These findings clarify the molecular mechanism of selective adsorption and separation of n-butane/i-butane on rationally designed MFI zeolite-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

This is not applicable in this article.

References

  1. Agbaje, T.A., et al.: Membranes and adsorbents in separation of C4 hydrocarbons: a review and the definition of the current upper bounds. Sep. Purif. Technol. 278, 15 (2022)

    Google Scholar 

  2. Mohamed, M.G., et al.: Microporous carbon and carbon/metal composite materials derived from bio-benzoxazine-linked precursor for CO2 capture and energy storage applications. Int. J. Mol. Sci. 23(1), 347 (2022)

    Article  CAS  Google Scholar 

  3. Abdelrasoul, A., et al.: Applications of molecular simulations for separation and adsorption in zeolites. Microporous Mesoporous Mater. 242, 294–348 (2017)

    Article  CAS  Google Scholar 

  4. Smit, B., Maesen, T.L.M.: Molecular simulations of zeolites: adsorption, diffusion, and shape selectivity. Chem. Rev. 108(10), 4125–4184 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Y., et al.: Hierarchy control of MFI zeolite membrane towards superior butane isomer separation performance. Angew. Chemie-Int. Ed. 60(14), 7659–7663 (2021)

    Article  CAS  Google Scholar 

  6. Mori, N., Tomita, T.: Separation of n-butane/iso-butane by self-supporting MFI membranes with various SiO2/Al2O3. Microporous Mesoporous Mater. 112(1–3), 88–96 (2008)

    Article  CAS  Google Scholar 

  7. Chmelik, C., et al.: Inflection in the loading dependence of the Maxwell–Stefan diffusivity of iso-butane in MFI zeolite. Chem. Phys. Lett. 459(1–6), 141–145 (2008)

    Article  ADS  CAS  Google Scholar 

  8. Ferreira, A.F.P., Mittelmeijer-Hazeleger, M.C., Bliek, A.: Adsorption and differential heats of adsorption of normal and iso-butane on zeolite MFI. Microporous Mesoporous Mater. 91(1–3), 47–52 (2006)

    Article  CAS  Google Scholar 

  9. Culfaz, P.Z., Culfaz, A., Kalipcilar, H.: Separation of butane isomers by MFI membranes synthesized in a flow system. Desalination 199(1–3), 357–359 (2006)

    Article  CAS  Google Scholar 

  10. Wang, Z., et al.: Transfer printing platelike MFI crystals as seeds for the preparation of silicalite-1 membranes. Microporous Mesoporous Mater. 336, 7 (2022)

    Article  Google Scholar 

  11. Kokotailo, G.T., et al.: Structure of synthetic zeolite ZSM-5. Nature 272(5652), 437–438 (1978)

    Article  ADS  CAS  Google Scholar 

  12. Agbaje, T.A., et al.: Membranes and adsorbents in separation of C4 hydrocarbons: a review and the definition of the current upper bounds. Sep. Purif. Technol. 278, 119530 (2022)

    Article  CAS  Google Scholar 

  13. Liu, Z.Q., et al.: Dependence of zeolite topology on alkane diffusion inside diverse channels. AIChE J. 66(8), 14 (2020)

    Article  CAS  Google Scholar 

  14. Choi, J., et al.: MFI zeolite membranes from a and randomly oriented monolayers. Adsorption 12(5), 339–360 (2006)

    Article  CAS  Google Scholar 

  15. Sun, K., et al.: Fast preparation of oriented silicalite-1 membranes by microwave heating for butane isomer separation. Sep. Purif. Technol. 219, 90–99 (2019)

    Article  CAS  Google Scholar 

  16. Krishna, R., van Baten, J.M.: Diffusion of hydrocarbon mixtures in MFI zeolite: influence of intersection blocking. Chem. Eng. J. 140(1–3), 614–620 (2008)

    Article  CAS  Google Scholar 

  17. Krishna, R., van Baten, J.M.: Separating n-alkane mixtures by exploiting differences in the adsorption capacity within cages of CHA, AFX and ERI zeolites. Sep. Purif. Technol. 60(3), 315–320 (2008)

    Article  CAS  Google Scholar 

  18. Maesen, T.L.M., et al.: Shape-selective n-alkane hydroconversion at exterior zeolite surfaces. J. Catal. 256(1), 95–107 (2008)

    Article  CAS  Google Scholar 

  19. Tuan, V.A., Falconer, J.L., Noble, R.D.: Alkali-free ZSM-5 membranes: preparation conditions and separation performance. Ind. Eng. Chem. Res. 38(10), 3635–3646 (1999)

    Article  CAS  Google Scholar 

  20. Hrabánek, P., et al.: A route to MFI zeolite-α-alumina composite membranes for separation of light paraffins. Desalination 224(1), 76–80 (2008)

    Article  Google Scholar 

  21. Wang, Q., et al.: Highly (h0h)-oriented silicalite-1 membranes for butane isomer separation. J. Membr. Sci. 540, 50–59 (2017)

    Article  CAS  Google Scholar 

  22. Wu, A., et al.: Synthesis optimization of (h0h)-oriented silicalite-1 membranes for butane isomer separation. Sep. Purif. Technol. 214, 51–60 (2019)

    Article  CAS  Google Scholar 

  23. Vlugt, T.J.H., Schenk, M.: Influence of framework flexibility on the adsorption properties of hydrocarbons in the zeolite silicalite. J. Phys. Chem. B 106(49), 12757–12763 (2002)

    Article  CAS  Google Scholar 

  24. Rappe, A.K., Goddard, W.A.: Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95(8), 3358–3363 (1991)

    Article  CAS  Google Scholar 

  25. Sun, H.: COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102(38), 7338–7364 (1998)

    Article  CAS  Google Scholar 

  26. Zhu, W., Kapteijn, F., Moulijn, J.A.: Adsorption of light alkanes on silicalite-1: reconciliation of experimental data and molecular simulations. Phys. Chem. Chem. Phys. 2(9), 1989–1995 (2000)

    Article  CAS  Google Scholar 

  27. Lennard-Jones, J.E.: Cohesion. Proc. Phys. Soc. 43(5), 461–482 (1931)

    Article  ADS  CAS  Google Scholar 

  28. Toukmaji, A.Y., Board, J.A.: Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 95(2), 73–92 (1996)

    Article  ADS  CAS  Google Scholar 

  29. Evans, D.J., Holian, B.L.: The nose–Hoover thermostat. J. Chem. Phys. 83(8), 4069–4074 (1985)

    Article  ADS  CAS  Google Scholar 

  30. Clark, S.J., et al.: First principles methods using CASTEP. Z. Für Kristallographie - Cryst. Mater. 220(5–6), 567–570 (2005)

    Article  ADS  CAS  Google Scholar 

  31. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Tkatchenko, A., Scheffler, M.: Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102(7), 073005 (2009)

    Article  ADS  PubMed  Google Scholar 

  33. Lefebvre, C., et al.: Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys. Chem. Chem. Phys. 19(27), 17928–17936 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. Lu, T., Chen, F.W.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012)

    Article  PubMed  Google Scholar 

  35. Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965)

    Article  ADS  CAS  Google Scholar 

  36. Lu, L.H., et al.: Adsorption of N-butane/I-butane in zeolites: simulation and theory study. Sep. Sci. Technol. 49(8), 1215–1226 (2014)

    Article  CAS  Google Scholar 

  37. Chmelik, C., et al.: Diffusion of n-butane/iso-butane mixtures in silicalite-1 investigated using infrared (IR) microscopy. Microporous Mesoporous Mater. 125(1–2), 11–16 (2009)

    Article  CAS  Google Scholar 

  38. Krishna, R., Vlugt, T.J.H., Smit, B.: Influence of isotherm inflection on diffusion in silicalite. Chem. Eng. Sci. 54(12), 1751–1757 (1999)

    Article  CAS  Google Scholar 

  39. Vlugt, T.J.H., et al.: Adsorption of linear and branched alkanes in the zeolite silicalite-1. J. Am. Chem. Soc. 120(22), 5599–5600 (1998)

    Article  CAS  Google Scholar 

  40. Lu, T., Chen, Q.X.: Van der Waals potential: an important complement to molecular electrostatic potential in studying intermolecular interactions. J. Mol. Model. 26(11), 9 (2020)

    Article  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China, Grant Numbers 21902068, and U20A20120; and by the PetroChina Innovation Foundation (2020D-5007-0401).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, YQ, and LS; methodology, HW, and QL; software, QL; validation, HW, JX and QL; formal analysis, HW; investigation, LZ, and YQ; resources, ZS, and HL; data curation, LS, and ZS; writing—original draft preparation, HW and QL; writing—review and editing, YC and LS; visualization, QL; supervision, ZS; project administration, YQ; funding acquisition, LS All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yucai Qin, Honghai Liu or Zhaolin Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This is not applicable in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2257.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, Q., Zhang, L. et al. Molecular mechanism of selective adsorption and separation of n-butane/i-butane on MFI zeolite. Adsorption 30, 1–13 (2024). https://doi.org/10.1007/s10450-023-00426-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-023-00426-7

Keywords

Navigation