skip to main content
research-article

In the Quest for Scale-optimal Mappings

Authors Info & Claims
Published:03 January 2024Publication History
Skip Abstract Section

Abstract

Optimal mapping is one of the longest-standing problems in computational mathematics. It is natural to measure the relative curve length error under map to assess its quality. The maximum of such error is called the quasi-isometry constant, and its minimization is a nontrivial max-norm optimization problem. We present a physics-based quasi-isometric stiffening (QIS) algorithm for the max-norm minimization of hyperelastic distortion.

QIS perfectly equidistributes distortion over the entire domain for the ground-truth test (unit hemisphere flattening) and, when it is not possible, tends to create zones where all cells have the same distortion. Such zones correspond to fragments of elastic material that became rigid under stiffening, reaching the deformation limit. As such, maps built by QIS are related to the de Boor equidistribution principle, which asks for an integral of a certain error indicator function to be the same over each mesh cell.

Under certain assumptions on the minimization toolbox, we prove that our method can build, in a finite number of steps, a deformation whose maximum distortion is arbitrarily close to the (unknown) minimum. We performed extensive testing: on more than 10,000 domains QIS was reliably better than the competing methods. In summary, we reliably build 2D and 3D mesh deformations with the smallest known distortion estimates for very stiff problems.

Skip Supplemental Material Section

Supplemental Material

REFERENCES

  1. Aigerman Noam and Lipman Yaron. 2013. Injective and bounded distortion mappings in 3D. ACM Trans. Graph. 32, 4, Article 106 (July2013), 14 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Andersen Erling D. and Andersen Knud D.. 2000. The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm. Springer US, Boston, MA, 197232. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  3. Bakhvalov Nikolai Sergeevich. 1969. The optimization of methods of solving boundary value problems with a boundary layer. USSR Comput. Math. Math. Phys. 9 (1969), 139166.Google ScholarGoogle ScholarCross RefCross Ref
  4. Ball John M.. 1976. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 4 (1976), 337403.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bommes David, Zimmer Henrik, and Kobbelt Leif. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, Article 77 (July2009), 10 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bonk Mario and Lang Urs. 2003. Bi-Lipschitz parameterization of surfaces. Math. Ann. 327, 1 (2003), 135169.Google ScholarGoogle ScholarCross RefCross Ref
  7. Chebyshev Pafnuty Lvovich. 1856. Sur la construction des cartes géographiques. Bulletin de la classe physico-mathématique de l’Académie Impériale des sciences de Saint-Pétersbourg VIV (1856), 257261. Reprinted in P. L. Tchebychef, Œuvres I, Chelsea, New York, 1962, pp. 233–236 and 239–247.Google ScholarGoogle Scholar
  8. Chien Edward, Levi Zohar, and Weber Ofir. 2016. Bounded distortion parametrization in the space of metrics. ACM Trans. Graph. 35, 6, Article 215 (Nov.2016), 16 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Ciarlet P. G. and Geymonat G.. 1982. Sur les lois de comportement en elasticite non-lineaire compressible. C.R. Acad. Sci. Paris Ser.II 295 (1982), 423426.Google ScholarGoogle Scholar
  10. Ciarlet Philippe and Necas Jindrich. 1985. Unilateral problems in nonlinear, three-dimensional elasticity. Arch. Rational Mech. Anal. 87 (1985), 319338. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  11. Ciarlet Philippe G.. 1988. Mathematical Elasticity: Three-Dimensional Elasticity. Number v. 1 in Studies in mathematics and its applications. North-Holland.Google ScholarGoogle Scholar
  12. Boor Carl de. 1973. Good Approximation by Splines with Variable Knots. Birkhäuser, Basel, 5772. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  13. Dinchenko A.. 1938. Chebyshev projection for the Soviet Union (in Russian). Geodesist 10 (1938), 414. Retrieved from https://elib.rgo.ru/safe-view/123456789/222079/1/MDAwMDAzMDZfR2VvZGV6aXN0IOKEljEwLnBkZg==Google ScholarGoogle Scholar
  14. Du Xingyi, Aigerman Noam, Zhou Qingnan, Kovalsky Shahar Z., Yan Yajie, Kaufman Danny M., and Ju Tao. 2020. Lifting simplices to find injectivity. ACM Trans. Graph. 39, 4, Article 120 (July2020), 17 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Esq. G. B. Airy1861. LIII. Explanation of a projection by balance of errors for maps applying to a very large extent of the earth’s surface; and comparison of this projection with other projections. London, Edinburgh, Dublin Philos. Mag. J. Sci. 22, 149 (1861), 409421. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  16. Fang Yu, Li Minchen, Jiang Chenfanfu, and Kaufman Danny M.. 2021. Guaranteed globally injective 3D deformation processing. ACM Trans. Graph. (SIGGRAPH) 40, 4, Article 75 (2021).Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fu Xiao-Ming and Liu Yang. 2016. Computing inversion-free mappings by simplex assembly. ACM Trans. Graph. 35, 6, Article 216 (Nov.2016), 12 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Fu Xiao-Ming, Liu Yang, and Guo Baining. 2015. Computing locally injective mappings by advanced MIPS. ACM Trans. Graph. 34, 4, Article 71 (July2015), 12 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Garanzha Vladimir. 2000. The barrier method for constructing quasi-isometric grids. Comput. Math. Math. Phys. 40 (2000), 16171637.Google ScholarGoogle Scholar
  20. Garanzha Vladimir and Kaporin Igor. 1999. Regularization of the barrier variational method of grid generation. Comput. Math. Math. Phys. 39, 9 (1999), 14261440.Google ScholarGoogle Scholar
  21. Garanzha Vladimir, Kaporin Igor, Kudryavtseva Liudmila, Protais François, Ray Nicolas, and Sokolov Dmitry. 2021. Foldover-free maps in 50 lines of code. ACM Trans. Graph. 40, 4 (2021). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Garanzha Vladimir and Kudryavtseva Liudmila. 2019. Hypoelastic stabilization of variational algorithm for construction of moving deforming meshes. In Optimization and Applications, Evtushenko Yury, Jaćimović Milojica, Khachay Michael, Kochetov Yury, Malkova Vlasta, and Posypkin Mikhail (Eds.). Springer International Publishing, Cham, 497511.Google ScholarGoogle Scholar
  23. Garanzha Vladimir, Kudryavtseva Liudmila, and Utyuzhnikov Sergei. 2014. Variational method for untangling and optimization of spatial meshes. J. Comput. Appl. Math. 269 (2014), 2441. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  24. Godunov Sergei Konstantinovich, Gordienko Valerii Mikhailovich, and Chumakov Gennadii Aleksandrovich. 1994. Quasi-isometric parametrization of a curvilinear quadrangle and a metric of constant curvature. Matematicheskie Trudy 26 (1994), 319.Google ScholarGoogle Scholar
  25. Gravé Demetrius. 1911. Démonstration d’un théorème de Tchébychef généralisé (in French). Journal für die reine und angewandte Mathematik 140 (1911), 247251.Google ScholarGoogle ScholarCross RefCross Ref
  26. Hestenes Magnus R. and Stiefel Eduard. 1952. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bureau Stand. 49 (1952), 409435.Google ScholarGoogle ScholarCross RefCross Ref
  27. Hormann K. and Greiner G.. 2000. MIPS: An efficient global parametrization method. In Curve and Surface Design. Vanderbilt University Press.Google ScholarGoogle Scholar
  28. Huang Weizhang. 2001. Variational mesh adaptation: Isotropy and equidistribution. J. Comput. Phys. 174, 2 (Dec.2001), 903924. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ivanenko S. A.. 2000. Control of cell shapes in the course of grid generation. Zh. Vychisl. Mat. Mat. Fiz. 40 (Jan. 2000), 16621684.Google ScholarGoogle Scholar
  30. Jacquotte Olivier-P.. 1988. A mechanical model for a new grid generation method in computational fluid dynamics. Comput. Methods Appl. Mech. Eng. 66, 3 (1988), 323338.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kovalsky Shahar Z., Aigerman Noam, Basri Ronen, and Lipman Yaron. 2014. Controlling singular values with semidefinite programming. ACM Trans. Graph. 33, 4 (2014). DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Kovalsky Shahar Z., Aigerman Noam, Basri Ronen, and Lipman Yaron. 2015. Large-scale bounded distortion mappings. ACM Trans. Graph. 34, 6 (2015).Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Levi Zohar and Zorin Denis. 2014. Strict minimizers for geometric optimization. ACM Trans. Graph. 33, 6, Article 185 (Nov.2014), 14 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Lipman Yaron. 2012. Bounded distortion mapping spaces for triangular meshes. ACM Trans. Graph. 31, 4, Article 108 (July2012), 13 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Milnor John. 1969. A problem in cartography. Amer. Math. Month. 76, 10 (1969), 11011112. http://www.jstor.org/stable/2317182Google ScholarGoogle ScholarCross RefCross Ref
  36. Prager William. 1957. On ideal locking materials. Trans. Soc. Rheol. 1, 1 (1957), 169175.Google ScholarGoogle ScholarCross RefCross Ref
  37. Rabinovich Michael, Poranne Roi, Panozzo Daniele, and Sorkine-Hornung Olga. 2017. Scalable locally injective mappings. ACM Trans. Graph. 36, 2, Article 16 (Apr.2017), 16 pages. DOI:Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Reshetnyak Yu G.. 1966. Bounds on moduli of continuity for certain mappings. Siberian Math. J. 7, 5 (1966), 879886.Google ScholarGoogle ScholarCross RefCross Ref
  39. Rumpf Martin. 1996. A variational approach to optimal meshes. Numer. Math. 72, 4 (1996), 523540.Google ScholarGoogle ScholarCross RefCross Ref
  40. Schüller Christian, Kavan Ladislav, Panozzo Daniele, and Sorkine-Hornung Olga. 2013. Locally injective mappings. Comput. Graph. Forum 32, 5 (2013).Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sorkine Olga and Alexa Marc. 2007. As-Rigid-as-Possible surface modeling. In Proceedings of the 5th Eurographics Symposium on Geometry Processing (SGP’07). Eurographics Association, Goslar, DEU, 109116.Google ScholarGoogle Scholar
  42. Sorkine O., Cohen-Or D., Goldenthal R., and Lischinski D.. 2002. Bounded-distortion piecewise mesh parameterization. In Proceedings of the IEEE Conference on Visualization (VIS’02).355362. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  43. Su Jian-Ping, Fu Xiao-Ming, and Liu Ligang. 2019. Practical foldover-free volumetric mapping construction. Comput. Graph. Forum 38, 7 (2019), 287297. DOI:arXiv:https://onlinelibrary.wiley.com/doi/pdf/ 10.1111/cgf.13837Google ScholarGoogle ScholarCross RefCross Ref
  44. Tchebychev P. L.. 1853. Théorie des mécanismes connus sous le nom de parallélogrammes. Imprimerie de l’Académie impériale des sciences.Google ScholarGoogle Scholar
  45. Xu X., Huang Weizhang, Russell R., and Williams J.. 2011. Convergence of de Boor’s algorithm for the generation of equidistributing meshes. IMA J. Numer. Anal. 31 (Apr. 2011), 580596. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  46. Zhu C., Byrd R. H., and Nocedal J.. 1997. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Trans. Math. Software 23, 4 (1997), 550560.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. In the Quest for Scale-optimal Mappings

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 43, Issue 1
      February 2024
      211 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3613512
      Issue’s Table of Contents

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 3 January 2024
      • Online AM: 17 November 2023
      • Accepted: 29 September 2023
      • Revised: 13 September 2023
      • Received: 2 November 2022
      Published in tog Volume 43, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
    • Article Metrics

      • Downloads (Last 12 months)150
      • Downloads (Last 6 weeks)27

      Other Metrics

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    View Full Text