Skip to main content
Log in

Parametrization of the deceleration parameter in a flat FLRW universe: constraints and comparative analysis with the \(\Lambda \)CDM paradigm

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The constraint of the deceleration parameter associated with dark energy stands as one of the most captivating subjects in the present cosmological framework. This study centers on the parametric reconstruction of the deceleration parameter in a flat Friedmann–Robertson–Walker (FLRW) Universe that encompasses radiation, dark energy, and pressure-less dark matter. In this context, we thoroughly investigate a highly motivated parametrization of q(z), which offers an evolutionary scenario from deceleration to the acceleration phase of the Universe. The crucial task of estimating the parametrization of the Hubble parameter is accomplished through its incorporation into the Friedmann equation. The free parameters are subsequently constrained utilizing a comprehensive set of observational data, including H(z), type Ia supernovae (SNIa), Baryon Acoustic Oscillation (BAO), Gamma Ray Burst (GRB), and Quasar (Q) measurements. Implementing the Markov Chain Monte Carlo (MCMC) technique and the H(z) + BAO + SNIa + GRB + Q dataset, we derive the best-fit values for the model parameters. Consequently, we provide a graphical analysis of the cosmographic parameters such as deceleration, jerk, and snap parameters by applying these optimized model parameter values. Finally, we compare our results with those of the standard \(\Lambda \)CDM paradigm to evaluate the viability of our proposed models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Riess, A.G., et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). https://doi.org/10.1086/300499. arXiv:astro-ph/9805201

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Measurements of the cosmological parameters Omega and Lambda from the first 7 supernovae at z\(>\) = 0.35. Astrophys. J. 483, 565 (1997). https://doi.org/10.1086/304265

    Article  ADS  Google Scholar 

  3. Perlmutter, S., et al.: Measurements of \(\Omega \) and \(\Lambda \) from 42 high redshift supernovae. Astrophys. J. 517, 565–586 (1999). https://doi.org/10.1086/307221

    Article  ADS  MATH  Google Scholar 

  4. Vollick, D.N.: 1/R curvature corrections as the source of the cosmological acceleration. Phys. Rev. D 68, 063510 (2003). https://doi.org/10.1103/PhysRevD.68.063510

    Article  ADS  Google Scholar 

  5. Nojiri, S., Odintsov, S.D.: Modified gravity with negative and positive powers of the curvature: unification of the inflation and of the cosmic acceleration. Phys. Rev. D 68, 123512 (2003). https://doi.org/10.1103/PhysRevD.68.123512

    Article  ADS  Google Scholar 

  6. Tonry, J.L., et al.: Cosmological results from high-z supernovae. Astrophys. J. 594, 1–24 (2003). https://doi.org/10.1086/376865. arXiv:astro-ph/0305008

    Article  ADS  Google Scholar 

  7. Riess, A.G., et al.: Type Ia supernova discoveries at z \(>\) 1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665–687 (2004). https://doi.org/10.1086/383612

    Article  ADS  MATH  Google Scholar 

  8. Clocchiatti, A., et al.: Hubble space telescope and ground-based observations of type Ia supernovae at redshift 0.5: cosmological implications. Astrophys. J. 642, 1–21 (2006). https://doi.org/10.1086/498491

    Article  ADS  Google Scholar 

  9. Caldwell, R.R., Komp, W., Parker, L., Vanzella, D.A.T.: A sudden gravitational transition. Phys. Rev. D 73, 023513 (2006). https://doi.org/10.1103/PhysRevD.73.023513. arXiv:astro-ph/0507622

    Article  ADS  Google Scholar 

  10. Sahni, V., Starobinsky, A.A.: The Case for a positive cosmological Lambda term. Int. J. Mod. Phys. D 9, 373–444 (2000). https://doi.org/10.1142/S0218271800000542

    Article  ADS  Google Scholar 

  11. Padmanabhan, T.: Cosmological constant: the weight of the vacuum. Phys. Rep. 380, 235–320 (2003). https://doi.org/10.1016/S0370-1573(03)00120-0. arXiv:hep-th/0212290

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003). https://doi.org/10.1103/RevModPhys.75.559

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15(11), 1753–1935 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Amendola, L., Tsujikawa, S.: Dark Energy: Theory and Observations. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  15. Steinhardt, P.J., Wang, L., Zlatev, I.: Cosmological tracking solutions. Phys. Rev. D 59(12), 123504 (1999)

    Article  ADS  Google Scholar 

  16. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989). https://doi.org/10.1103/RevModPhys.61.1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Bouali, A., Albarran, I., Bouhmadi-López, M., Ouali, T.: Cosmological constraints of phantom dark energy models. Phys. Dark Univ. 26, 100391 (2019). https://doi.org/10.1016/j.dark.2019.100391. arXiv:1905.07304

    Article  Google Scholar 

  18. Bouali, A., Albarran, I., Bouhmadi-Lopez, M., Errahmani, A., Ouali, T.: Cosmological constraints of interacting phantom dark energy models. Phys. Dark Univ. 34, 100907 (2021). https://doi.org/10.1016/j.dark.2021.100907. arXiv:2103.13432

    Article  Google Scholar 

  19. Mhamdi, D., Bargach, F., Dahmani, S., Bouali, A., Ouali, T.: Comparing phantom dark energy models with various diagnostic tools. Gen. Relativ. Gravit. 55(1), 11 (2023). https://doi.org/10.1007/s10714-022-03055-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Dahmani, S., Bouali, A., El Bojaddaini, I., Errahmani, A., Ouali, T.: Constraining neutrino properties and smoothing the Hubble tension via the LSBR model. Gen. Relativ. Gravit. 55(1), 22 (2023). https://doi.org/10.1007/s10714-023-03066-y

    Article  ADS  MATH  Google Scholar 

  21. Dahmani, S., Bouali, A., Bojaddaini, I.E., Errahmani, A., Ouali, T.: Smoothing the \(H_0\) tension with a dynamical dark energy model. arXiv:2301.04200

  22. Bouali, A., Chaudhary, H., Mehrotra, A., Pacif, S.K.J.: Model-independent study for a quintessence model of dark energy: analysis and observational constraints. arXiv:2304.02652

  23. Capozziello, S., Cardone, V.F., Elizalde, E., Nojiri, S., Odintsov, S.D.: Observational constraints on dark energy with generalized equations of state. Phys. Rev. D 73, 043512 (2006). https://doi.org/10.1103/PhysRevD.73.043512. arXiv:astro-ph/0508350

    Article  ADS  Google Scholar 

  24. Escamilla-Rivera, C., Capozziello, S.: Unveiling cosmography from the dark energy equation of state. Int. J. Mod. Phys. D 28(12), 1950154 (2019). https://doi.org/10.1142/S0218271819501542

    Article  ADS  MathSciNet  Google Scholar 

  25. Debnath, U.: Gravitational waves for variable modified Chaplygin gas and some parametrizations of dark energy in the background of FRW universe. Eur. Phys. J. Plus 135(2), 135 (2020). https://doi.org/10.1140/epjp/s13360-020-00219-9

    Article  Google Scholar 

  26. del Campo, S., Duran, I., Herrera, R., Pavon, D.: Three thermodynamically-based parameterizations of the deceleration parameter. Phys. Rev. D 86, 083509 (2012). https://doi.org/10.1103/PhysRevD.86.083509. arXiv:1209.3415

    Article  ADS  Google Scholar 

  27. Cunha, J., Lima, J.A.S.: Transition redshift: new kinematic constraints from supernovae. Mon. Not. R. Astron. Soc. 390(1), 210–217 (2008)

    Article  ADS  Google Scholar 

  28. Cunha, J.V.: Kinematic constraints to the transition redshift from SNe Ia union data. Phys. Rev. D 79, 047301 (2009). https://doi.org/10.1103/PhysRevD.79.047301. arXiv:0811.2379

    Article  ADS  Google Scholar 

  29. Riess, A.G., et al.: Type Ia supernova discoveries at z \(>\) 1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665–687 (2004). https://doi.org/10.1086/383612

    Article  ADS  MATH  Google Scholar 

  30. Xu, L.-I., Zhang, C.-W., Chang, B.-R., Liu, H.-Y.: Constraints to deceleration parameters by recent cosmic observations. Mod. Phys. Lett. A 23, 1939–1948 (2008). https://doi.org/10.1142/S0217732308025991

    Article  ADS  MATH  Google Scholar 

  31. Xu, L., Lu, J.: Cosmic constraints on deceleration parameter with Sne Ia and CMB. Mod. Phys. Lett. A 24, 369–376 (2009). https://doi.org/10.1142/S0217732309027212

    Article  ADS  MATH  Google Scholar 

  32. Nair, R., Jhingan, S., Jain, D.: Cosmokinetics: a joint analysis of standard candles, rulers and cosmic clocks. J. Cosmol. Astropart. Phys. 2012(01), 018 (2012)

    Article  ADS  Google Scholar 

  33. Akarsu, O., Dereli, T., Kumar, S., Xu, L.: Probing kinematics and fate of the Universe with linearly time-varying deceleration parameter. Eur. Phys. J. Plus 129, 22 (2014). https://doi.org/10.1140/epjp/i2014-14022-6

    Article  Google Scholar 

  34. Santos, B., Carvalho, J.C., Alcaniz, J.S.: Current constraints on the epoch of cosmic acceleration. Astropart. Phys. 35(1), 17–20 (2011)

    Article  ADS  Google Scholar 

  35. Gong, Y.-G., Wang, A.: Reconstruction of the deceleration parameter and the equation of state of dark energy. Phys. Rev. D 75, 043520 (2007). https://doi.org/10.1103/PhysRevD.75.043520. arXiv:astro-ph/0612196

    Article  ADS  Google Scholar 

  36. Turner, M.S., Riess, A.G.: Do SNe Ia provide direct evidence for past deceleration of the universe? Astrophys. J. 569, 18 (2002). https://doi.org/10.1086/338580. arXiv:astro-ph/0106051

    Article  ADS  Google Scholar 

  37. Al Mamon, A., Das, S.: A divergence free parametrization of deceleration parameter for scalar field dark energy. Int. J. Mod. Phys. D 25(03), 1650032 (2016). https://doi.org/10.1142/S0218271816500322

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Gadbail, G.N., Mandal, S., Sahoo, P.K.: Parametrization of deceleration parameter in f (q) gravity. Physics 4(4), 1403–1412 (2022)

    Article  ADS  Google Scholar 

  39. Bouali, A., Shukla, B.K., Chaudhary, H., Tiwari, R.K., Samar, M., Mustafa, G.: Cosmological tests of parametrization \(q = \alpha -\beta \) H in f(Q) FLRW cosmology. Int. J. Geom. Methods Mod. Phys. (2023). https://doi.org/10.1142/s0219887823501529

    Article  MathSciNet  Google Scholar 

  40. Khurana, M., Chaudhary, H., Mumtaz, S., Pacif, S., Mustafa, G.: Analyzing a higher order \( q (t) \) model and its implications in the late evolution of the universe using recent observational datasets. arXiv preprint arXiv:2309.14222

  41. Bouali, A., Chaudhary, H., Debnath, U., Sardar, A., Mustafa, G.: Data analysis of three parameter models of deceleration parameter in frw universe. arXiv preprint arXiv:2304.13137

  42. Bouali, A., Chaudhary, H., Mehrotra, A., Pacif, S.: Model-independent study for a quintessence model of dark energy: analysis and observational constraints. arXiv preprint arXiv:2304.02652

  43. Arora, D., Chaudhary, H., Pacif, S.K.J.: Diagnostic and comparative analysis of dark energy models with \( q (z) \) parametrizations. Available at SSRN 4543124

  44. Shekh, S., Chaudhary, H., Bouali, A., Dixit, A.: Observational constraints on teleparallel effective equation of state. Gen. Relativ. Gravit. 55(8), 95 (2023)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Chaudhary, H., Arora, D., Debnath, U., Mustafa, G., Maurya, S.K.: A new cosmological model: exploring the evolution of the universe and unveiling super-accelerated expansion. arXiv preprint arXiv:2308.07354

  46. Shukla, B.K., Bouali, A., Chaudhary, H., Tiwari, R.K., San Martin, M.: Cosmographic studies of \(q= \alpha - \beta \) h parametrization in f (t) framework. Int. J. Geom. Methods Mod. Phys. (2023). https://doi.org/10.1142/S0219887824500075

    Article  Google Scholar 

  47. Chaudhary, H., Bouali, A., Debnath, U., Roy, T., Mustafa, G.: Constraints on the parameterized deceleration parameter in frw universe. Phys. Scr. 98(9), 095006 (2023)

    Article  ADS  Google Scholar 

  48. Bouali, A., Chaudhary, H., Mumtaz, S., Mustafa, G., Maurya, S.: Observational constraining study of new deceleration parameters in frw universe. Fortschr. Phys. (2023). https://doi.org/10.1002/prop.202300033

    Article  Google Scholar 

  49. Bouali, A., Shukla, B., Chaudhary, H., Tiwari, R.K., Samar, M., Mustafa, G.: Cosmological tests of parametrization q= \(\alpha \)- \(\beta \) h in f (q) flrw cosmology. Int. J. Geom. Methods Mod. Phys. (2023). https://doi.org/10.1142/S0219887823501529

    Article  MathSciNet  Google Scholar 

  50. Chaudhary, H., Kaushik, A., Kohli, A.: Cosmological test of \(\sigma \)\(\theta \) as function of scale factor in f (r, t) framework. New Astron. 103, 102044 (2023)

    Article  Google Scholar 

  51. Khurana, M., Chaudhary, H., Debnath, U., Molla, N.U., Mustafa, G.: Cosmological test of dark energy parametrizations in Horava–Lifshitz gravity. arXiv preprint arXiv:2310.07410

  52. Mamon, A.A., Das, S.: A parametric reconstruction of the deceleration parameter. Eur. Phys. J. C 77(7), 495 (2017)

    Article  ADS  Google Scholar 

  53. Jamil, M., Momeni, D., Myrzakulov, R.: Observational constraints on non-minimally coupled Galileon model. Eur. Phys. J. C 73(3), 2347 (2013)

    Article  ADS  Google Scholar 

  54. Bouali, A., Chaudhary, H., Debnath, U., Roy, T., Mustafa, G.: Constraints on the parameterized deceleration parameter in FRW universe. arXiv:2301.12107

  55. Shekh, S.H., Bouali, A., Mustafa, G., Pradhan, A., Javed, F.: Observational constraints in accelerated emergent \(f(Q)\) gravity model. Class. Quantum Gravity 40(5), 055011 (2023). https://doi.org/10.1088/1361-6382/acb631

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Gadbail, G.N., Harshita, Bouali, A., Sahoo, P.K.: Statistical and cosmological analysis of Weyl-type \(f(Q,T)\) models using Pantheon+ dataset. arXiv:2305.11190

  57. Barboza, E., Jr., Alcaniz, J., Zhu, Z.-H., Silva, R.: Generalized equation of state for dark energy. Phys. Rev. D 80(4), 043521 (2009)

    Article  ADS  Google Scholar 

  58. Kundu, R., Debnath, U., Pradhan, A.: Studying the optical depth behaviour of parametrized deceleration parameter in non-flat universe. Int. J. Geom. Methods Mod. Phys. 20, 2350110 (2023)

    Article  Google Scholar 

  59. Bandyopadhyay, T., Debnath, U.: Fluid accretion upon higher-dimensional wormhole and black hole for parameterized deceleration parameter. Int. J. Geom. Methods Mod. Phys. 19(12), 2250182 (2022)

    Article  MathSciNet  Google Scholar 

  60. Foreman-Mackey, D., Hogg, D.W., Lang, D., Goodman, J.: emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125(925), 306 (2013)

    Article  ADS  Google Scholar 

  61. Brooks, S.P., Gelman, A.: General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7(4), 434–455 (1998)

    MathSciNet  Google Scholar 

  62. Lewis, A., Bridle, S.: Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys. Rev. D 66(10), 103511 (2002)

    Article  ADS  Google Scholar 

  63. Gilks, W.R., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Practice. CRC Press, Boca Raton (1995)

    Book  MATH  Google Scholar 

  64. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)

    Article  ADS  MATH  Google Scholar 

  65. Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications

  66. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis. CRC Press, Boca Raton (2013)

    Book  MATH  Google Scholar 

  67. Verde, L., Peiris, H., Spergel, D., Nolta, M., Bennett, C., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., et al.: First-year Wilkinson microwave anisotropy probe (wmap)* observations: parameter estimation methodology. Astrophys. J. Suppl. Ser. 148(1), 195 (2003)

    Article  ADS  Google Scholar 

  68. Trotta, R.: Applications of Bayesian model selection to cosmological parameters. Mon. Not. R. Astron. Soc. 378(1), 72–82 (2007)

    Article  ADS  Google Scholar 

  69. Gaztanaga, E., Bonvin, C., Hui, L.: Measurement of the dipole in the cross-correlation function of galaxies. J. Cosmol. Astropart. Phys. 2017(01), 032 (2017)

    Article  Google Scholar 

  70. Stern, D., Jimenez, R., Verde, L., Kamionkowski, M., Stanford, S.A.: Cosmic chronometers: constraining the equation of state of dark energy. I: H (z) measurements. J. Cosmol. Astropart. Phys. 2010(02), 008 (2010)

    Article  Google Scholar 

  71. Lee, S.: Constraining minimally extended varying speed of light by cosmological chronometers. arXiv preprint arXiv:2301.06947

  72. Gaztanaga, E., Cabre, A., Hui, L.: Clustering of luminous red galaxies IV: baryon acoustic peak in the line-of-sight direction and a direct measurement of H(z). Mon. Not. R. Astron. Soc. 399, 1663–1680 (2009). https://doi.org/10.1111/j.1365-2966.2009.15405.x

    Article  ADS  Google Scholar 

  73. Chimento, L., Forte, M.I.: Unified model of baryonic matter and dark components. Phys. Lett. B 666, 205–211 (2008). https://doi.org/10.1016/j.physletb.2008.07.064

    Article  ADS  Google Scholar 

  74. Oka, A., Saito, S., Nishimichi, T., Taruya, A., Yamamoto, K.: Simultaneous constraints on the growth of structure and cosmic expansion from the multipole power spectra of the SDSS DR7 LRG sample. Mon. Not. R. Astron. Soc. 439, 2515–2530 (2014). https://doi.org/10.1093/mnras/stu111

    Article  ADS  Google Scholar 

  75. Wang, Y., et al.: BOSS. Mon. Not. R. Astron. Soc. 469(3), 3762–3774 (2017)

    Article  ADS  Google Scholar 

  76. Moresco, M., Cimatti, A., Jimenez, R., Pozzetti, L., Zamorani, G., Bolzonella, M., Dunlop, J., Lamareille, F., Mignoli, M., Pearce, H., et al.: Improved constraints on the expansion rate of the universe up to z 1.1 from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 2012(08), 006 (2012)

    Article  Google Scholar 

  77. Chuang, C.-H., Wang, Y.: Modeling the anisotropic two-point galaxy correlation function on small scales and improved measurements of \(H(z)\), \(D_A(z)\), and \(\beta (z)\) from the Sloan digital sky survey DR7 luminous red galaxies. Mon. Not. R. Astron. Soc. 435, 255–262 (2013). https://doi.org/10.1093/mnras/stt1290

    Article  ADS  Google Scholar 

  78. Alam, S.: BOSS. Mon. Not. R. Astron. Soc. 470(3), 2617–2652 (2017). https://doi.org/10.1093/mnras/stx721

    Article  ADS  Google Scholar 

  79. Blake, C., et al.: The WiggleZ Dark Energy Survey: joint measurements of the expansion and growth history at z \(<\) 1. Mon. Not. R. Astron. Soc. 425, 405–414 (2012). https://doi.org/10.1111/j.1365-2966.2012.21473.x

    Article  ADS  Google Scholar 

  80. Zhang, C., Zhang, H., Yuan, S., Liu, S., Zhang, T.-J., Sun, Y.-C.: Four new observational h (z) data from luminous red galaxies in the Sloan digital sky survey data release seven. Res. Astron. Astrophys. 14(10), 1221 (2014)

    Article  ADS  Google Scholar 

  81. Chuang, C.-H., Prada, F., Cuesta, A.J., Eisenstein, D.J., Kazin, E., Padmanabhan, N., Sánchez, A.G., Xu, X., Beutler, F., Manera, M., et al.: The clustering of galaxies in the SDSS-III Baryon oscillation spectroscopic survey: single-probe measurements and the strong power of f (z) \(\sigma \)8 (z) on constraining dark energy. Mon. Not. R. Astron. Soc. 433(4), 3559–3571 (2013)

    Article  ADS  Google Scholar 

  82. Moresco, M., Pozzetti, L., Cimatti, A., Jimenez, R., Maraston, C., Verde, L., Thomas, D., Citro, A., Tojeiro, R., Wilkinson, D.: A 6% measurement of the hubble parameter at z 0.45: direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart. Phys. 2016(05), 014 (2016)

    Article  Google Scholar 

  83. Lee, S.: Cosmic distance duality as a probe of minimally extended varying speed of light. arXiv preprint arXiv:2108.06043

  84. Delubac, T., Bautista, J.E., Rich, J., Kirkby, D., Bailey, S., Font-Ribera, A., Slosar, A., Lee, K.-G., Pieri, M.M., Hamilton, J.-C., et al.: Baryon acoustic oscillations in the ly\(\alpha \) forest of boss dr11 quasars. Astron. Astrophys. 574, A59 (2015)

    Article  Google Scholar 

  85. Bautista, J.E., Guy, J., Rich, J., Blomqvist, M., Des Bourboux, H.D.M., Pieri, M.M., Font-Ribera, A., Bailey, S., Delubac, T., Kirkby, D., et al.: Measurement of baryon acoustic oscillation correlations at z= 2.3 with sdss dr12 ly\(\alpha \)-forests. Astron. Astrophys. 603, A12 (2017)

    Article  Google Scholar 

  86. Font-Ribera, A., Kirkby, D., Busca, N., Miralda-Escude, J., Ross, N.P., Slosar, A., Rich, J., Aubourg, E., Bailey, S., Bhardwaj, V., et al.: Quasar-Lyman \(\alpha \) forest cross-correlation from boss dr11: baryon acoustic oscillations. J. Cosmol. Astropart. Phys. 2014(05), 027–027 (2014)

    Article  MathSciNet  Google Scholar 

  87. Ratsimbazafy, A.L., Loubser, S.I., Crawford, S.M., Cress, C.M., Bassett, B.A., Nichol, R.C., Väisänen, P.: Age-dating luminous red galaxies observed with the Southern African large telescope. Mon. Not. R. Astron. Soc. 467(3), 3239–3254 (2017). https://doi.org/10.1093/mnras/stx301

    Article  ADS  Google Scholar 

  88. Scolnic, D.M., Jones, D., Rest, A., Pan, Y., Chornock, R., Foley, R., Huber, M., Kessler, R., Narayan, G., Riess, A., et al.: The complete light-curve sample of spectroscopically confirmed SNe Ia from pan-starrs1 and cosmological constraints from the combined pantheon sample. Astrophys. J. 859(2), 101 (2018)

    Article  ADS  Google Scholar 

  89. Conley, A., Guy, J., Sullivan, M., Regnault, N., Astier, P., Balland, C., Basa, S., Carlberg, R., Fouchez, D., Hardin, D., et al.: Supernova constraints and systematic uncertainties from the first three years of the supernova legacy survey. Astrophys. J. Suppl. Ser. 192(1), 1 (2010)

    Article  ADS  Google Scholar 

  90. Demianski, M., Piedipalumbo, E., Sawant, D., Amati, L.: Cosmology with gamma-ray bursts-II. Cosmography challenges and cosmological scenarios for the accelerated universe. Astron. Astrophys. 598, A113 (2017)

    Article  ADS  Google Scholar 

  91. Roberts, C., Horne, K., Hodson, A.O., Leggat, A.D.: Tests of \(\lambda \)cdm and conformal gravity using grb and quasars as standard candles out to \(z \sim 8\). arXiv preprint arXiv:1711.10369

  92. Percival, W.J., Reid, B.A., Eisenstein, D.J., Bahcall, N.A., Budavari, T., Frieman, J.A., Fukugita, M., Gunn, J.E., Ivezi’c, Z., Knapp, G.R., et al.: Baryon acoustic oscillations in the Sloan digital sky survey data release 7 galaxy sample. Mon. Not. R. Astron. Soc. 401(4), 2148–2168 (2010)

    Article  ADS  Google Scholar 

  93. Beutler, F., Blake, C., Colless, M., Jones, D.H., Staveley-Smith, L., Campbell, L., Parker, Q., Saunders, W., Watson, F.: The 6df galaxy survey: baryon acoustic oscillations and the local hubble constant. Mon. Not. R. Astron. Soc. 416(4), 3017–3032 (2011)

    Article  ADS  Google Scholar 

  94. Delubac, T., Rich, J., Bailey, S., Font-Ribera, A., Kirkby, D., Le Goff, J.-M., Pieri, M.M., Slosar, A., Aubourg, É., Bautista, J.E., et al.: Baryon acoustic oscillations in the ly\(\alpha \) forest of boss quasars. Astron. Astrophys. 552, A96 (2013)

    Article  Google Scholar 

  95. Anderson, L., Aubourg, E., Bailey, S., Bizyaev, D., Blanton, M., Bolton, A.S., Brinkmann, J., Brownstein, J.R., Burden, A., Cuesta, A.J., et al.: The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample. Mon. Not. R. Astron. Soc. 427(4), 3435–3467 (2012)

    Article  ADS  Google Scholar 

  96. Seo, H.-J., Ho, S., White, M., Cuesta, A.J., Ross, A.J., Saito, S., Reid, B., Padmanabhan, N., Percival, W.J., De Putter, R., et al.: Acoustic scale from the angular power spectra of SDSS-III dr8 photometric luminous galaxies. Astrophys. J. 761(1), 13 (2012)

    Article  ADS  Google Scholar 

  97. Ross, A.J., Samushia, L., Howlett, C., Percival, W.J., Burden, A., Manera, M.: The clustering of the SDSS dr7 main galaxy sample-I. A 4 per cent distance measure at z= 0.15. Mon. Not. R. Astron. Soc. 449(1), 835–847 (2015)

    Article  ADS  Google Scholar 

  98. Tojeiro, R., Ross, A.J., Burden, A., Samushia, L., Manera, M., Percival, W.J., Beutler, F., Brinkmann, J., Brownstein, J.R., Cuesta, A.J., et al.: The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: galaxy clustering measurements in the low-redshift sample of data release 11. Mon. Not. R. Astron. Soc. 440(3), 2222–2237 (2014)

    Article  ADS  Google Scholar 

  99. Bautista, J.E., Vargas-Magaña, M., Dawson, K.S., Percival, W.J., Brinkmann, J., Brownstein, J., Camacho, B., Comparat, J., Gil-Marín, H., Mueller, E.-M., et al.: The SDSS-IV extended baryon oscillation spectroscopic survey: baryon acoustic oscillations at redshift of 0.72 with the dr14 luminous red galaxy sample. Astrophys. J. 863(1), 110 (2018)

    Article  ADS  Google Scholar 

  100. De Carvalho, E., Bernui, A., Carvalho, G., Novaes, C., Xavier, H.: Angular baryon acoustic oscillation measure at z= 2.225 from the SDSS quasar survey. J. Cosmol. Astropart. Phys. 2018(04), 064 (2018)

    Article  Google Scholar 

  101. Ata, M., Baumgarten, F., Bautista, J., Beutler, F., Bizyaev, D., Blanton, M.R., Blazek, J.A., Bolton, A.S., Brinkmann, J., Brownstein, J.R., et al.: The clustering of the SDSS-IV extended baryon oscillation spectroscopic survey dr14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2. Mon. Not. R. Astron. Soc. 473(4), 4773–4794 (2018)

    Article  ADS  Google Scholar 

  102. Abbott, T., Abdalla, F., Alarcon, A., Allam, S., Andrade-Oliveira, F., Annis, J., Avila, S., Banerji, M., Banik, N., Bechtol, K., et al.: Dark energy survey year 1 results: Measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1. Mon. Not. R. Astron. Soc. 483(4), 4866–4883 (2019)

    Article  ADS  Google Scholar 

  103. Molavi, Z., Khodam-Mohammadi, A.: Observational tests of Gauss–Bonnet like dark energy model. Eur. Phys. J. Plus 134(6), 254 (2019)

    Article  Google Scholar 

  104. Benisty, D., Staicova, D.: Testing late-time cosmic acceleration with uncorrelated baryon acoustic oscillation dataset. Astron. Astrophys. 647, A38 (2021)

    Article  ADS  Google Scholar 

  105. Kazantzidis, L., Perivolaropoulos, L.: Evolution of the f \(\sigma \) 8 tension with the Planck 15/\(\lambda \) CDM determination and implications for modified gravity theories. Phys. Rev. D 97(10), 103503 (2018)

    Article  ADS  Google Scholar 

  106. Hogg, N.B., Martinelli, M., Nesseris, S.: Constraints on the distance duality relation with standard sirens. J. Cosmol. Astropart. Phys. 2020(12), 019 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  107. Martinelli, M., Martins, C.J.A.P., Nesseris, S., Sapone, D., Tutusaus, I., Avgoustidis, A., Camera, S., Carbone, C., Casas, S., Ilić, S., et al.: Euclid: forecast constraints on the cosmic distance duality relation with complementary external probes. Astron. Astrophys. 644, A80 (2020)

    Article  Google Scholar 

  108. Sahni, V., Saini, T.D., Starobinsky, A.A., Alam, U.: Statefinder: a new geometrical diagnostic of dark energy. J. Exp. Theor. Phys. Lett. 77, 201–206 (2003)

    Article  Google Scholar 

  109. Visser, M.: Jerk, snap and the cosmological equation of state. Class. Quantum Gravity 21(11), 2603 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  110. Luongo, O.: Dark energy from a positive jerk parameter. Mod. Phys. Lett. A 28, 1350080 (2013). https://doi.org/10.1142/S0217732313500806

    Article  ADS  MathSciNet  Google Scholar 

  111. Dunajski, M., Gibbons, G.: Cosmic jerk, snap and beyond. Class. Quantum Gravity 25(23), 235012 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  112. Sahni, V., Saini, T.D., Starobinsky, A.A., Alam, U.: Statefinder: a new geometrical diagnostic of dark energy. J. Exp. Theor. Phys. Lett. 77, 201–206 (2003)

    Article  Google Scholar 

  113. Alam, U., Sahni, V., Deep Saini, T., Starobinsky, A.: Exploring the expanding universe and dark energy using the statefinder diagnostic. Mon. Not. R. Astron. Soc. 344(4), 1057–1074 (2003)

    Article  ADS  Google Scholar 

  114. Sami, M., Shahalam, M., Skugoreva, M., Toporensky, A.: Cosmological dynamics of a nonminimally coupled scalar field system and its late time cosmic relevance. Phys. Rev. D 86(10), 103532 (2012)

    Article  ADS  Google Scholar 

  115. Myrzakulov, R., Shahalam, M.: Statefinder hierarchy of bimetric and Galileon models for concordance cosmology. J. Cosmol. Astropart. Phys. 2013(10), 047 (2013)

    Article  Google Scholar 

  116. Aviles, A., Klapp, J., Luongo, O.: Toward unbiased estimations of the statefinder parameters. Phys. Dark Univ. 17, 25–37 (2017)

    Article  Google Scholar 

  117. Sahni, V., Shafieloo, A., Starobinsky, A.A.: Two new diagnostics of dark energy. Phys. Rev. D 78(10), 103502 (2008)

    Article  ADS  Google Scholar 

  118. Zunckel, C., Clarkson, C.: Consistency tests for the cosmological constant. Phys. Rev. Lett. 101(18), 181301 (2008)

    Article  ADS  Google Scholar 

  119. Shahalam, M., Pathak, S., Verma, M., Khlopov, M.Y., Myrzakulov, R.: Dynamics of interacting quintessence. Eur. Phys. J. C 75, 1–9 (2015)

    Article  ADS  Google Scholar 

  120. Agarwal, A., Myrzakulov, R., Pacif, S., Shahalam, M.: Cosmic acceleration from coupling of baryonic and dark matter components: analysis and diagnostics. Int. J. Mod. Phys. D 28(06), 1950083 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  121. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  122. Liddle, A.R.: How many cosmological parameters. Mon. Not. R. Astron. Soc. 351(3), L49–L53 (2004)

    Article  ADS  Google Scholar 

  123. Nesseris, S., Garcia-Bellido, J.: Is the Jeffreys’ scale a reliable tool for Bayesian model comparison in cosmology? J. Cosmol. Astropart. Phys. 2013(08), 036 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

G. Mustafa is very thankful to Prof. Gao Xianlong from the Department of Physics, Zhejiang Normal University, for his kind support and help during this research. Further, G. Mustafa acknowledges Grant No. ZC304022919 to support his Postdoctoral Fellowship at Zhejiang Normal University, China.

Author information

Authors and Affiliations

Authors

Contributions

HC and SM: Conceived of the presented idea, Verified the analytical methods, Discussed the results and contributed to the final manuscript. AB: Developed the theory, Investigate the analysis and supervised the findings of this work, Discussed the results and contributed to the final manuscript. UD: Conceived of the presented idea, Discussed the results and contributed to the final manuscript. G. Mustafa: Performed the computations, Verified the analytical methods, Discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to G. Mustafa.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, H., Mumtaz, S., Bouali, A. et al. Parametrization of the deceleration parameter in a flat FLRW universe: constraints and comparative analysis with the \(\Lambda \)CDM paradigm. Gen Relativ Gravit 55, 133 (2023). https://doi.org/10.1007/s10714-023-03181-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03181-w

Keywords

Navigation