Skip to main content
Log in

Optimized Detection of Water and Food Toxin Contamination Using Vibrio persian Bioluminescence Inhibition Assay (VPBIA)

  • ANALYTICAL CHEMISTRY OF WATER
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

Environmental pollution is a major global problem, which involves the pollution of food and drinking water, and the assessment of pollution levels is vital for the health of the community. The most significant part of this assessment is to determine the involvement of unintentional contamination (agricultural pesticides) and deliberate biological attacks of drinking water. The aim of this study was to detect water and food toxin contamination using Vibrio persian Bioluminescence Inhibition Assay (VPBIA) by optimizing the culture medium condition. To this end, the optimization of the growth and bioluminescence emission of the bacteria was carried out in four media cultures: photobacterium, Luria-Bertani (LB), and two seawater mediums (SWC#1, SWC#2). After determining SWC#1 as an optimum culture medium and optimizing the growth and emission of bioluminescence using response surface methodology (RSM), three factors (temperature variation, pH, and incubation time) were considered. The experimental design results indicated that the best conditions for the growth and distribution of the bacteria bioluminescence are pH 8.5, 20°C, and an incubation time of 20 h. Finally, the bioluminescent inhibitory bioassays for two food and water toxin (Staphylococcal enterotoxin B (SEB) and cholera toxin) were performed. The results show that cholera toxin had the most effect on V. persian light emissions. This new method could be used for the development of warning devices in order to detect water and food contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ghernaout, D., and Elboughdiri, N., Disinfection by-products: Presence and elimination in drinking water, Open Access Lib. J., 2020, vol. 7, p. e6140. https://doi.org/10.4236/oalib.1106140

  2. Schweitzer, L. and Noblet, J., Water contamination and pollution, in Green Chemistry, Amsterdam: Elsevier, 2018, pp. 261–290. https://doi.org/10.1016/B978-0-12-809270-5.00011-X

  3. Kumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., Bach, Q.V., Kamyab, H., Khan, S.A., Yadav, S., and Malav, L.C., Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches—A review, Environ. Res., 2019, vol. 179, p. 108792. https://doi.org/10.1016/j.envres.2019.108792

    Article  CAS  Google Scholar 

  4. Li, L., Rong, S., Wang, R., and Yu, S., Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: A review, Chem. Eng. J., 2021, vol. 405, p. 126673. https://doi.org/10.1016/j.cej.2020.126673

    Article  CAS  Google Scholar 

  5. Ali, H., Khan, E., and Ilahi, I., Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation, J. Chem., 2019. vol. 2019, p. 6730305. https://doi.org/10.1155/2019/6730305

    Article  CAS  Google Scholar 

  6. Luan, X., Liu, X., Fang, C., Chu, W., and Xu, Z., Ecotoxicological effects of disinfected wastewater effluents: A short review of in vivo toxicity bioassays on aquatic organisms, Environ. Sci. Water Res. Technol., 2020, vol. 6, pp. 2275−2286. https://doi.org/10.1039/D0EW00290A

    Article  CAS  Google Scholar 

  7. Sarkar, D., Poddar, K., Verma, N., Biswas, S., and Sarkar, A., Bacterial quorum sensing in environmental biotechnology: A new approach for the detection and remediation of emerging pollutants, in Emerging Technologies in Environmental Bioremediation, Amsterdam: Elsevier, 2020, pp. 151–164. https://doi.org/10.1016/B978-0-12-819860-5.00006-7

  8. Huang, H.J., Lee, Y.H., Hsu, Y.H., Liao, C.T., Lin, Y.F., and Chiu, H.W., Current strategies in assessment of nanotoxicity: Alternatives to in vivo animal testing, Int. J. Mol. Sci., 2021, vol. 22, p. 4216. https://doi.org/10.3390/ijms22084216

    Article  CAS  Google Scholar 

  9. Kassim, A., Halmi, M.I.E., Abd Gani, S.S., Zaidan, U.H., Othman, R., Mahmud, K., and Abd Shukor, M.Y., Bioluminescent method for the rapid screening of toxic heavy metals in environmental samples using Photobacterium leiognathi strain AK-MIE, Ecotoxicol. Environ. Saf., 2020, vol. 196, p. 110527. https://doi.org/10.1016/j.ecoenv.2020.110527

    Article  CAS  Google Scholar 

  10. Esimbekova, E.N., Kalyabina, V.P., Kopylova, K.V., Torgashina, I.G., and Kratasyuk, V.A., Design of bioluminescent biosensors for assessing contamination of complex matrices, Talanta, 2021, vol. 233, p.122509. https://doi.org/10.1016/j.talanta.2021.122509

    Article  CAS  Google Scholar 

  11. Chung, T.H., Meshref, M.N., and Dhar, B.R., A review and roadmap for developing microbial electrochemical cell-based biosensors for recalcitrant environmental contaminants, emphasis on aromatic compounds, Chem. Eng. J., 2021, vol. 424, p. 130245. https://doi.org/10.1016/j.cej.2021.130245

    Article  CAS  Google Scholar 

  12. Abbas, M., Adil, M., Ehtisham-ul-Haque, S., Munir, B., Yameen, M., Ghaffar, A., Shar, G.A., Asif Tahir, M., and Iqbal, M., Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review, Sci. Total Environ., 2018, vol. 626, pp. 1295–1309. https://doi.org/10.1016/j.scitotenv.2018.01.066

    Article  CAS  Google Scholar 

  13. Angaji, M.S., Jabalameli, L., and Tabatabaee Bafroee, A., Light-emitting bacteria from the Caspian Sea, North of Iran, Caspian J. Environ. Sci., 2019, vol. 17, pp. 295–304. https://doi.org/10.22124/cjes.2019.3803

    Article  Google Scholar 

  14. Adnan, N.A., Halmi, M.I.E., Abd Gani, S.S., Zaidan, U.H., Othman, R., and Abd Shukor, M.Y., Statistical modeling for the optimization of bioluminescence production by newly isolated Photobacterium sp. NAA-MIE, Proc. Natl. Acad. Sci., India, Sect. B, 2020, vol. 90, pp. 797–810. https://doi.org/10.1007/s40011-019-01154-1

    Article  CAS  Google Scholar 

  15. Mohammad, A.M., Chowdhury, T., Biswas, B., and Absar, N., Food poisoning and intoxication: A global leading concern for human health, in Food Safety and Preservation, New York: Academic, 2018, pp. 307–352.

    Google Scholar 

  16. Perin, L.S., Moraes, G.V., Galeazzo, G.A., and Oliveira, A.G., Bioluminescent dinoflagellates as a bioassay for toxicity assessment, Int. J. Mol. Sci., 2022, vol. 23, p. 13012. https://doi.org/10.3390/ijms232113012

    Article  CAS  Google Scholar 

  17. Gui, Q., Lawson, T., Shan, S., Yan, L., and Liu, Y., The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics, Sensors, 2017, vol. 17, no. 7, pp. 16–23. https://doi.org/10.3390/s17071623

    Article  CAS  Google Scholar 

  18. Barcelo, D., Zonja, B., and Ginebreda, A., Toxicity tests in wastewater and drinking water treatment processes: A complementary assessment tool to be on your radar, J. Environ. Chem. Eng., 2020, vol. 8, no. 5, p. 104262. https://doi.org/10.1016/j.jece.2020.104262

    Article  CAS  Google Scholar 

  19. Abdel-hamid, A.A. and Blaghen, M., Optimization of bioluminescence of Vibrio fischeri and assessment of Hg++, Cd++, As++, Zn++, Ag+, Cu++ and Ni++ ions, Asian J. Biotechnol. Bioresour. Technol., 2013, vol. 4, pp. 1–9. https://doi.org/10.9734/AJB2T/2018/43927

    Article  Google Scholar 

  20. Mohseni, M., Pourseyed, S.F., and Chaichi, M.J., Bioassay detection of some benzene derivatives using luminescent bacterium Vibrio sp. MM1 isolated from the Caspian Sea, Cell. Mol. Res. (Iran. J. Biol.), 2020, vol. 33, pp. 526–535.

    Google Scholar 

  21. Mirjani, M., Soleimani, M., and Salari, V., Toxicity assessment of total petroleum hydrocarbons in aquatic environments using the bioluminescent bacterium Aliivibrio fischeri, Ecotoxicol. Environ. Saf., 2021, vol. 207, p. 111554. https://doi.org/10.1016/j.ecoenv.2020.111554

    Article  CAS  Google Scholar 

  22. Li, X., Pan, L., and Wang, B., Influence of aflatoxin on Vibrio fischeri luminescence, Wei Sheng Wu Xue Bao, 2011, vol. 51, pp. 1669–1674.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Zeinoddini.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed Veysi, Mehdi Zeinoddini Optimized Detection of Water and Food Toxin Contamination Using Vibrio persian Bioluminescence Inhibition Assay (VPBIA). J. Water Chem. Technol. 45, 564–573 (2023). https://doi.org/10.3103/S1063455X23060073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X23060073

Keywords:

Navigation