Skip to main content
Log in

In-situ formation of the adsorbent based on octadecylamine for the extraction of Ag+ ions from aqueous solutions and its determination by microinjection flame atomic absorption spectrometry

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this research, a dispersive solid phase extraction procedure based on changing the solubility of octadecylamine with pH was proposed to determine Ag+ ions in different water samples. For this purpose, first, the pH of sample solution containing the analyte was adjusted to 10.5. Then desired volume of the octadecylamine dissolved in acidic solution was injected into the solution. Because of the low solubility of octadecylamine in alkaline solution, a cloudy state was formed. The produced octadecylamine particles acted as a complexing agent for Ag+ ions and adsorbent for the formed complex. The obtained cloudy solution was centrifuged and the sedimented particles were removed and dissolved in a diluted nitric acid solution. It was injected into a flame atomic absorption spectrometry to determine the extracted amounts of the analyte. The effect of important parameters such as the amount of octadecylamine, volume of nitric acid, and centrifugation and vortexing conditions on the extraction efficiency of the procedure was studied and optimized. In optimal conditions, the developed method showed a linear range of 0.50–200 µg L−1. The limits of detection and quantification were 0.18 and 0.50 µg L−1, respectively. Extraction recovery was 93.6%. The relative standard deviations were less than 4%. The effectiveness of the method was investigated by determination of Ag+ ions in water and wastewater samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. A.S. Kholmogorova, M.L. Chernysh, L.K. Neudachina, I.S. Puzyrev, React. Funct. Polym. 152, 104596 (2020)

    Article  CAS  Google Scholar 

  2. M.T. Doménech-Carbó, F.D. Turo, N. Montoya, F. Catalli, A. Doménech-Carbó, C.D. Vito, Sci. Rep. 8, 10676 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  3. E.Y. Frag, N.A. El-ZaherSally, E.A. Elashery, Microchem. J. 155, 104750 (2020)

    Article  CAS  Google Scholar 

  4. N. Duran, P.D. Marcato, G.I.H. De Souza, O.L. Alves, E. Esposito, J. Biomed. Nanotech. 3, 203–208 (2007)

    Article  CAS  Google Scholar 

  5. S.P. Deshmukh, S.M. Patil, S.B. Mullani, S.D. Delekar, Mater. Sci. Eng. 97, 954–965 (2019)

    Article  CAS  Google Scholar 

  6. P.D. Howe, S. Dobson, Silver and silver compounds: environmental aspects, In: Concise International Chemical Assessment Document, 44, World Health Organi-zation, Geneva, 2002.

  7. L. Kocurova, I.S. Balogh, L. Nagy, F. Billes, A. Simon, V. Andruch, Microchem. J. 99, 514 (2011)

    Article  CAS  Google Scholar 

  8. Eisler R. Silver hazards to fish, wildlife and invertebrates: a synoptic review, US Department of the Interior, National Biological Service, Washington, DC, 1996p. 44.

  9. X. Yang, Zh. Ji, X. Yang, G. Li, X. Liao, Saudi J. Biol. Sci. 24, 589–594 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Sikder, J.R. Lead, G.T. Chandler, M. Baalousha, Sci. Total. Environ. 618, 597–607 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. R.K. Shah, Orien. J. Chem. 32, 499–507 (2016)

    Article  CAS  Google Scholar 

  12. R. Cheng, L. Li, S. Ou, Y. Bu, L. Dai, Y. Xue, Roy. Soc. Ch. 6, 36218–36222 (2016)

    CAS  Google Scholar 

  13. Y. Yang, L. Luo, H.P. Li, Q. Wang, Z.G. Yang, C.L. Long, Talanta 161, 342–349 (2016)

    Article  CAS  PubMed  Google Scholar 

  14. R. Mikelova, J. Baloun, J. Petrlova, V. Adam, L. Havel, J. Petrek, A. Horna, R. Kizek, Bioelectrochem. 70, 508–518 (2007)

    Article  CAS  Google Scholar 

  15. H. Zejli, J.L. Hidalgo-Hidalgo de Cisneros, I. Naranjo-Rodriguez, K.R. Temsamani, Talanta 71, 1594–1598 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. E. Tomaszewska, K. Soliwoda, K. Kadziola, B. Tkacz-Szczesna, G. Celichowski, M. Cichomski, W. Szmaja, J. Grobelny, Microchem. J. 2013, 60 (2013)

    Google Scholar 

  17. P. Anekthirakun, A. Imyim, Microchem. J. 145, 470–475 (2019)

    Article  CAS  Google Scholar 

  18. H. Tavallali, H. Malekzadeh, F. Dadvar, M. Tabandeh, M. Haghshenas, Arab. J. Chem. 10, S2090–S2097 (2017)

    Article  CAS  Google Scholar 

  19. T. Daşbaş, Ş Sacmacı, S. Şahan, Ş Kartal, A. Ülgen, Talanta 103, 1 (2013)

    Article  Google Scholar 

  20. F. Pena-Pereira, I. Lavilla, C. Bendicho, Anal. Chim. Acta 669, 1 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. F. Pena-Pereira, I. Lavilla, C. Bendicho, Spectrochim. Acta B 64, 1–15 (2009)

    Article  Google Scholar 

  22. M.A. Farajzadeh, S.M. Sorouraddin, M.R. Afshar Mogaddam, Microchim. Acta 181, 829–851 (2014)

    Article  CAS  Google Scholar 

  23. H. Abdolmohammad-Zadeh, Z. Javan, Microchim. Acta 182, 1447–1456 (2015)

    Article  CAS  Google Scholar 

  24. E. Tahmasebi, Y. Yamini, Microchim. Acta 181, 543–551 (2014)

    Article  CAS  Google Scholar 

  25. T. Cetin, S. Tokalıoglu, A. Ulgen, S. Sahan, I. Ozenturk, C. Soykan, Talanta 105, 340–346 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. Sh. Chen, Y. Sun, J. Chao, L. Cheng, Y. Chen, J. Liu, J. Environ. Sci. 41, 211–217 (2016)

    Article  CAS  Google Scholar 

  27. S. Jafarvand, A. Bidari, P. Hemmatkhah, M.R. Milani Hosseini, Y. Assadi, Anal. Lett. 42, 2214–2231 (2009)

    Article  CAS  Google Scholar 

  28. T. Daşbaşı, Ş Saçmacı, A. Ülgen, Ş Kartal, J. Ind. Eng. Chem. 28, 316–321 (2015)

    Article  Google Scholar 

  29. A.N. Anthemidis, K.I.G. Ioannou, Talanta 84, 1215–1220 (2011)

    Article  CAS  PubMed  Google Scholar 

  30. A.R. Ghiasvand, F. Moradi, H. Sharghi, A.R. Hasaninejad, Anal. Sci. 21, 387–390 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Y. Su, T. Ren, Y. Lin, Ch. Zheng, Adv. Sample Prep. 3, 100033 (2022)

    Article  Google Scholar 

  32. F. Omidi, M. Behbahani, S. Jamaleddin Shahtaheri, S. Salimi, Environ. Monit. Assess. 187, 361 (2015)

    Article  PubMed  Google Scholar 

  33. O. Heitzsch, K. Gloe, H. Stephan, E. Weber, Solvent Extr. Ion Exc. 12, 475–496 (1994)

    Article  CAS  Google Scholar 

  34. A. Chisvert, S. Cárdenas, R. Lucena, Trends Anal. Chem. 112, 226–233 (2019)

    Article  CAS  Google Scholar 

  35. T. Khezeli, A. Daneshfar, Trends Anal. Chem. 89, 99–118 (2017)

    Article  CAS  Google Scholar 

  36. M. Ghorbani, M. Aghamohammadhassan, M. Chamsaz, H. Akhlaghi, T. Pedramrad, Trends Anal. Chem. 118, 793–809 (2019)

    Article  CAS  Google Scholar 

  37. M. Sajid, M. Khaled Nazal, I. Ihsanullah, Anal. Chim. Acta 1141, 246–262 (2021)

    Article  CAS  PubMed  Google Scholar 

  38. A. Chisvert, J.L. Benedé, A. Salvador, Anal. Chim. Acta 1034, 22–38 (2018)

    Article  CAS  PubMed  Google Scholar 

  39. M.A. Farajzadeh, M. Sattari Dabbagh, J. Chromatogr. A 1627, 461389 (2020)

    Article  Google Scholar 

  40. R. Fu, Y. Liu, Z. Lou, Z. Wang, S.A. Baig, X. Xu, J. Taiwan Inst. Chem. Eng. 62, 247–258 (2016)

    Article  CAS  Google Scholar 

  41. D. Lv, Y. Liu, J. Zhou, K. Yang, Z. Lou, S.A. Baig, X. Xu, Appl. Surf. Sci. 428, 648–658 (2018)

    Article  CAS  Google Scholar 

  42. K. Li, J. Cao, H. Li, J. Liu, M. Lu, D. Tang, RSC Adv. 6, 92186–92196 (2016)

    Article  CAS  Google Scholar 

  43. F. Fang, L. Kong, J. Huang, S. Wu, K. Zhang, X. Wang, B. Sun, Z. Jin, J. Wang, X.-J. Huang, J. Hazard. Mater. 270, 1–10 (2014)

    Article  CAS  PubMed  Google Scholar 

  44. X. Dong, L.Q. Ma, Y. Li, J. Hazard. Mater. 190, 909–915 (2011)

    Article  CAS  PubMed  Google Scholar 

  45. A. Mukherjee, A. Zimmerman, W. Harris, Geoderma 163, 247–255 (2011)

    Article  CAS  Google Scholar 

  46. L. G. Sillen, A.E. Martell, The Chemical Society, London, 1964, no. 17; 1973, no. 25.

  47. D. D. Perrin, IUPAC Chemical Data Series no. 22, Pergamon Press, Oxford, 1979.

  48. K. Parvizzad, S.M. Sorouraddin, M.A. Farajzadeh, J. Food. Compos. 112, 104654 (2022).

  49. S.M. Sorouraddin, M.A. Farajzadeh, A. Hassanyani, M.R. Afshar Mogaddam, RSC Adv. 6, 108603 (2016)

    Article  CAS  Google Scholar 

  50. Gh. Khayatian, Sh. Hassanpoor, J. Incl. Phenom. Macrocycl. Chem. 73, 151–159 (2012)

    Article  CAS  Google Scholar 

  51. H. Tavallali, S. Yazdandoust, M. Yazdandoust, Clean: Soil, Air, Water 38, 242–247 (2010)

    CAS  Google Scholar 

  52. S. Rastegarzadeh, N. Pourreza, A. Larki, J. Ind. Eng. Chem. 24, 297–301 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

The cost of the research was received by Saeed Mohammad Sorouraddin from University of Tabriz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Mohammad Sorouraddin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Informed consent

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 192 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zendehdel, A.A., Sorouraddin, S.M. & Farajzadeh, M.A. In-situ formation of the adsorbent based on octadecylamine for the extraction of Ag+ ions from aqueous solutions and its determination by microinjection flame atomic absorption spectrometry. ANAL. SCI. 39, 1901–1908 (2023). https://doi.org/10.1007/s44211-023-00399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00399-1

Keywords

Navigation