Skip to main content
Log in

Arctangent normalization and principal-component analyses merge method to classify characteristics utilizing time-dependent material data

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We propose a technique for classifying paints with time-dependent properties using a new method of merging principal-component analyses (the “PCA-merge” method) that utilizes shifting of the barycenter of the PCA score plot. To understand the molecular structure, elemental concentrations, and the concentrations in the evolved gaseous component of various paints, we performed comprehensive characterizations using Fourier transform infrared spectroscopy, inductively coupled plasma mass spectrometry, and head-space–gas chromatograph/mass spectrometry while drying the paint films for 1–48 h. As various detected intensity- and time-axis variables have different dimensions that cannot be handled equally, we normalized those data as an angle parameter (θ) using arctangent to reduce the influence of high/low intensity data and the various analytical instrument. We could classify the paints into suitable categories by applying multivariate analysis to this arctangent-normalized data set. In addition, we developed a new PCA-merge method to analyze data groups that include different time components. This method merges the PCA data groups of each time-component axis into that of specific-component axes and distinguishes each sample by utilizing the shift in the barycenter of the PCA score plot. The proposed method enables the simultaneous utilization of various data groups that contain information about static and dynamic properties. This provides further insight into the characteristics of the paint materials via shifts in the barycenter of the PCA scores without requiring numerous peak identifications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Nishimoto, H. Eguchi, E. Shimoda, T. Suzuki, Anal. Sci. (2015). https://doi.org/10.2116/analsci.31.929

    Article  PubMed  Google Scholar 

  2. JIS K 5500:2000 Glossary of terms for coating materials. https://kikakurui.com/k5/K5500-2000-01.html

  3. T. Suzuki, K. Takahashi, H. Uehara, T. Yamanobe, J. Therm. Anal. Calorim. (2013). https://doi.org/10.1007/s10973-013-3098-z

    Article  Google Scholar 

  4. R. Bro, A.K. Smilde, Anal. Methods. (2014). https://doi.org/10.1039/C3AY41907J

    Article  Google Scholar 

  5. M. Isshiki, S. Nakamura, Y. Suzuki, Nippon Shokuhin Kagaku Kogaku Kaishi (2015). https://doi.org/10.3136/nskkk.62.257

    Article  Google Scholar 

  6. M.J. Latorre, Food Chem. (1999). https://doi.org/10.1016/S0308-8146(98)00217-9

    Article  Google Scholar 

  7. M.J.J. Baxter, H.M. Crews, M. John-Dennis, I. Goodall, D. Anderson, Food Chem. (1997). https://doi.org/10.1016/S0308-8146(96)00365-2

    Article  Google Scholar 

  8. Y. Murakami, H. Iwabuchi, Y. Ohba, H. Fukami, J. Oleo Sci. (2019). https://doi.org/10.5650/jos.ess19155

    Article  PubMed  Google Scholar 

  9. S.D. Rodríguez, M. Gagneten, A.E. Farroni, N.M. Percibaldi, M.P. Buera, Food Cont. (2019). https://doi.org/10.1016/j.foodcont.2019.05.025

    Article  Google Scholar 

  10. G. Squeo, S. Grassi, V.M. Paradiso, C. Alamprese, F. Caponio, Food Cont. (2019). https://doi.org/10.1016/j.foodcont.2019.03.027

    Article  Google Scholar 

  11. D. Granato, J.S. Santos, G.B. Escher, B.L. Ferreira, R.M. Maggio, Trends Food Sci. Technol. (2018). https://doi.org/10.1016/j.tifs.2017.12.006

    Article  Google Scholar 

  12. M. Maric, W. van Bronswijk, S.W. Lewis, K. Pitts, D.E. Martin, Forensic Sci. Int. (2013). https://doi.org/10.1016/j.forsciint.2013.01.032

    Article  PubMed  Google Scholar 

  13. R. Chophi, S. Sharma, R. Singh, Forensic Chem. (2020). https://doi.org/10.1016/j.forc.2019.100209

    Article  Google Scholar 

  14. N.Z. Shafii, A.S.M. Saudi, J.C. Pang, I.F. Abu, N. Sapawe, M.K.A. Kamarudin, H.F.M. Saudi, Heliyon. (2019). https://doi.org/10.1016/j.heliyon.2019.e02534

    Article  PubMed  PubMed Central  Google Scholar 

  15. M. Quinn, T. Brettell, M. Joshi, J. Bonetti, L. Quarino, Forensic Sci. Int. (2020). https://doi.org/10.1016/j.forsciint.2019.110135

    Article  PubMed  Google Scholar 

  16. X. Ran, Y. Xi, Y. Lu, X. Wang, Z. Lu, Artif. Intell. Rev. (2022). https://doi.org/10.1007/s10462-022-10366-3

    Article  Google Scholar 

  17. T. Tanji, M. Furukawa, S. Taguma, K. Fujimoto, H. Sato, N. Shibasaki, Y. Takagai, ACS ES&T Water (2023). https://doi.org/10.1021/acsestwater.2c00455

    Article  Google Scholar 

  18. K. Kobayashi, Y. Niida, M. Furukawa, O. Shikino, M. Furuishi, T. Suzuki, Eng. Mater. (THE NIKKAN KOGYO SHIMBUN Japan 67(9), 50–51 (2019)

    Google Scholar 

  19. T. Suzuki, N. Sokutei, (2020) https://doi.org/10.11311/jscta.47.4_148

  20. G.E.P. Box, G.M. Jenkins, G.C. Reinsel, Time series analysis: forecasting and control (Wiley, Hoboken, 2016). (978-1-118-63434-9)

    Google Scholar 

  21. B.P. Geurts, A.H. Neerincx, S. Bertrand, M.A.A.P. Leemans, G.J. Postma, J.L. Wolfender, S.M. Cristescu, L.M.C. Buydens, J.J. Jansen, Anal. Chim. Acta. (2017). https://doi.org/10.1016/j.aca.2017.01.064

    Article  PubMed  Google Scholar 

  22. T. Morishita, J. Chem. Phys. (2021). https://doi.org/10.1063/5.0061874

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Furukawa.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 676 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furukawa, M., Niida, Y., Kobayashi, K. et al. Arctangent normalization and principal-component analyses merge method to classify characteristics utilizing time-dependent material data. ANAL. SCI. 39, 1957–1966 (2023). https://doi.org/10.1007/s44211-023-00403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00403-8

Keywords

Navigation