Skip to main content

Advertisement

Log in

Comprehensive scRNA-seq Model Reveals Artery Endothelial Cell Heterogeneity and Metabolic Preference in Human Vascular Disease

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Vascular disease is one of the major causes of death worldwide. Endothelial cells are important components of the vascular structure. A better understanding of the endothelial cell changes in the development of vascular disease may provide new targets for clinical treatment strategies. Single-cell RNA sequencing can serve as a powerful tool to explore transcription patterns, as well as cell type identity. Our current study is based on comprehensive scRNA-seq data of several types of human vascular disease datasets with deep-learning-based algorithm. A gene set scoring system, created based on cell clustering, may help to identify the relative stage of the development of vascular disease. Metabolic preference patterns were estimated using a graphic neural network model. Overall, our study may provide potential treatment targets for retaining normal endothelial function under pathological situations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao Y, Fu L, Wu J et al (2022) Integrated analysis of multimodal single-cell data with structural similarity. Nucleic Acids Res 50:e121. https://doi.org/10.1093/nar/gkac781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ding J, Regev A (2021) Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces. Nat Commun 12:2554. https://doi.org/10.1038/s41467-021-22851-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cao J, Spielmann M, Qiu X et al (2019) The single-cell transcriptional landscape of mammalian organogenesis. Nature 566:496–502. https://doi.org/10.1038/s41586-019-0969-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grabski IN, Street K, Irizarry RA (2023) Significance analysis for clustering with single-cell RNA-sequencing data. Nat Methods 20:1196–1202. https://doi.org/10.1038/s41592-023-01933-9

    Article  CAS  PubMed  Google Scholar 

  5. Alquicira-Hernandez J, Powell JE (2021) Nebulosa recovers single-cell gene expression signals by kernel density estimation. Bioinformatics 37:2485–2487. https://doi.org/10.1093/bioinformatics/btab003

    Article  CAS  PubMed  Google Scholar 

  6. Gu Z (2022) Complex heatmap visualization. iMeta 1:e43. https://doi.org/10.1002/imt2.43

    Article  Google Scholar 

  7. Gu Z, Gu L, Eils R et al (2014) circlize Implements and enhances circular visualization in R. Bioinformatics 30:2811–2812. https://doi.org/10.1093/bioinformatics/btu393

    Article  CAS  PubMed  Google Scholar 

  8. Sun D, Guan X, Moran AE et al (2022) Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data. Nat Biotechnol 40:527–538. https://doi.org/10.1038/s41587-021-01091-3

    Article  CAS  PubMed  Google Scholar 

  9. Keenan AB, Torre D, Lachmann A et al (2019) ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res 47:W212–W224. https://doi.org/10.1093/nar/gkz446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kolde R, Laur S, Adler P et al (2012) Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28:573–580. https://doi.org/10.1093/bioinformatics/btr709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alghamdi N, Chang W, Dang P et al (2021) A graph neural network model to estimate cell-wise metabolic flux using single-cell RNA-seq data. Genome Res 31:1867–1884. https://doi.org/10.1101/gr.271205.120

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li Y, Ren P, Dawson A et al (2020) Single-cell transcriptome analysis reveals dynamic cell populations and differential gene expression patterns in control and aneurysmal human aortic tissue. Circulation 142:1374–1388. https://doi.org/10.1161/CIRCULATIONAHA.120.046528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pan H, Xue C, Auerbach BJ et al (2020) Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 142:2060–2075. https://doi.org/10.1161/CIRCULATIONAHA.120.048378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Alsaigh T, Evans D, Frankel D et al (2022) Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun Biol 5:1084. https://doi.org/10.1038/s42003-022-04056-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen K, Mou R, Zhu P et al (2023) The effect of lymphangiogenesis in transplant arteriosclerosis. Circulation 147:482–497. https://doi.org/10.1161/CIRCULATIONAHA.122.060799

    Article  CAS  PubMed  Google Scholar 

  16. Scott DJ, Allen CJ, Honstvet CA et al (2013) Lymphangiogenesis in abdominal aortic aneurysm. Br J Surg 100:895–903. https://doi.org/10.1002/bjs.9128

    Article  CAS  PubMed  Google Scholar 

  17. Yang Q, Xu J, Ma Q et al (2018) PRKAA1/AMPKalpha1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis. Nat Commun 9:4667. https://doi.org/10.1038/s41467-018-07132-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao G, Lu H, Liu Y et al (2021) Single-cell transcriptomics reveals endothelial plasticity during diabetic atherogenesis. Front Cell Dev Biol 9:689469. https://doi.org/10.3389/fcell.2021.689469

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mahmoud AD, Ballantyne MD, Miscianinov V et al (2019) The human-specific and Smooth muscle cell-enriched LncRNA SMILR promotes proliferation by regulating mitotic CENPF mRNA and drives cell-cycle progression which can be targeted to limit vascular remodeling. Circ Res 125:535–551. https://doi.org/10.1161/CIRCRESAHA.119.314876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hebbel RP, Wei P, Milbauer L et al (2020) Abnormal endothelial gene expression associated with early coronary atherosclerosis. J Am Heart Assoc 9:e016134. https://doi.org/10.1161/JAHA.120.016134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Monteiro JP, Rodor J, Caudrillier A et al (2021) MIR503HG loss promotes endothelial-to-mesenchymal transition in vascular disease. Circ Res 128:1173–1190. https://doi.org/10.1161/CIRCRESAHA.120.318124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ding S, Liu J, Han X et al (2022) ICAM-1-related noncoding RNA accelerates atherosclerosis by amplifying NF-kappaB signaling. J Mol Cell Cardiol 170:75–86. https://doi.org/10.1016/j.yjmcc.2022.06.001

    Article  CAS  PubMed  Google Scholar 

  23. Fowler JWM, Zhang R, Tao B et al (2022) Inflammatory stress signaling via NF-kB alters accessible cholesterol to upregulate SREBP2 transcriptional activity in endothelial cells. Elife. https://doi.org/10.7554/eLife.79529

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rohlenova K, Veys K, Miranda-Santos I et al (2018) Endothelial cell metabolism in health and disease. Trends Cell Biol 28:224–236. https://doi.org/10.1016/j.tcb.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  25. Pi X, Xie L, Patterson C (2018) Emerging roles of vascular endothelium in metabolic homeostasis. Circ Res 123:477–494. https://doi.org/10.1161/CIRCRESAHA.118.313237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jung Y, Bang S, Choi K et al (2006) TC1 (C8orf4) enhances the Wnt/beta-catenin pathway by relieving antagonistic activity of Chibby. Cancer Res 66:723–728. https://doi.org/10.1158/0008-5472.CAN-05-3124

    Article  CAS  PubMed  Google Scholar 

  27. Zhao A, Xiao H, Zhu Y et al (2022) Omentin-1: a newly discovered warrior against metabolic related diseases. Expert Opin Ther Targets 26:275–289. https://doi.org/10.1080/14728222.2022.2037556

    Article  CAS  PubMed  Google Scholar 

  28. Wang J, Xu X, Li P et al (2021) HDAC3 protects against atherosclerosis through inhibition of inflammation via the microRNA-19b/PPARgamma/NF-kappaB axis. Atherosclerosis 323:1–12. https://doi.org/10.1016/j.atherosclerosis.2021.02.013

    Article  CAS  PubMed  Google Scholar 

  29. Missiou A, Wolf D, Platzer I et al (2010) CD40L induces inflammation and adipogenesis in adipose cells–a potential link between metabolic and cardiovascular disease. Thromb Haemost 103:788–796. https://doi.org/10.1160/TH09-07-0463

    Article  CAS  PubMed  Google Scholar 

  30. Garcia-Ramirez M, Martinez-Gonzalez J, Juan-Babot JO et al (2005) Transcription factor SOX18 is expressed in human coronary atherosclerotic lesions and regulates DNA synthesis and vascular cell growth. Arterioscler Thromb Vasc Biol 25:2398–2403. https://doi.org/10.1161/01.ATV.0000187464.81959.23

    Article  CAS  PubMed  Google Scholar 

  31. Ghatnekar A, Chrobak I, Reese C et al (2013) Endothelial GATA-6 deficiency promotes pulmonary arterial hypertension. Am J Pathol 182:2391–2406. https://doi.org/10.1016/j.ajpath.2013.02.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qiu J, Li M, Su C et al (2022) FOXS1 promotes tumor progression by upregulating CXCL8 in colorectal cancer. Front Oncol 12:894043. https://doi.org/10.3389/fonc.2022.894043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rohlenova K, Goveia J, Garcia-Caballero M et al (2020) Single-cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis. Cell Metab 31(862–877):e814. https://doi.org/10.1016/j.cmet.2020.03.009

    Article  CAS  Google Scholar 

  34. Wu D, Huang RT, Hamanaka RB et al (2017) HIF-1alpha is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. Elife. https://doi.org/10.7554/eLife.25217

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jianming Zeng (University of Macau), and all the members of his bioinformatics team, biotrainee, for generously sharing their experience and codes.

Funding

The present study was supported by the National Natural Science Foundation of China [81970384, 82022005, 82100378]; Natural Science Foundation of Chongqing [2022NSCQ-LZX0118]; Technology Project of Sichuan Province of China [2021YFQ0061].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gengze Wu or Chunyu Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests related to this work.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Liu, Y., Li, X. et al. Comprehensive scRNA-seq Model Reveals Artery Endothelial Cell Heterogeneity and Metabolic Preference in Human Vascular Disease. Interdiscip Sci Comput Life Sci 16, 104–122 (2024). https://doi.org/10.1007/s12539-023-00591-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-023-00591-x

Keywords

Navigation