Skip to main content
Log in

Design, Simulation, and Construction of a SWB Antenna Using a Metasurface Luneburg LENS

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In this work, a novel compact antenna with a super-wideband (SWB) feeding (3–43 GHz) is designed. The SWB lens antenna consists of a super-wideband feeding, a parallel plate waveguide (PPW), and a dielectric lens. The flat Luneburg lens has been designed and implemented based on metasurface technology. This antenna can be employed as a sense antenna in ultrawideband (UWB) applications. Attaining a SWB antenna that also grants a high gain in the whole bandwidth is a major issue considered in this work. The introduced structure reveals a very good matching properties (VSWR < 2.15) and also acceptable gain (5–13.5dBi) and very good efficiency (typ. > 83%) in the whole ultrawide bandwidth (3–43GHz). Another important feature of the proposed structure is its capability for being used in multi-beam applications by merely adding some extra feeding ports to it. To show this, the designed lens is fed by three ports placed on its circumference with 30° angular separation. These results show three beam directions in − 30°, + 30°, and 0°, and in addition to its broad bandwidth, excellent impedance matching and close-to-ideal port isolation are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arezoomand AS, Sadeghzadeh R-A, Naser-Moghadasi M (2016) Novel techniques in tapered slot antenna for linearity phase center and gain enhancement. IEEE Antennas Wirel Propag Lett 16:270–273

    Article  ADS  Google Scholar 

  • Biswas B, Ghatak R, Poddar D (2017) A fern fractal leaf inspired wideband antipodal Vivaldi antenna for microwave imaging system. IEEE Trans Antennas Propag 65(11):6126–6129

    Article  ADS  MathSciNet  Google Scholar 

  • Bosiljevac M, Casaletti M, Caminita F, Sipus Z, Maci S (2012) Non-uniform metasurface Luneburg lens antenna design. IEEE Trans Antennas Propag 60(9):4065–4073

    Article  ADS  MathSciNet  Google Scholar 

  • Bourqui J, Okoniewski M, Fear EC (2010) Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Trans Antennas Propag 58(7):2318–2326

    Article  ADS  Google Scholar 

  • Brazález AA, Manholm L, Johansson M, Mattsson M, Quevedo-Teruel O (2018) A Ka-band glide-symmetric planar Luneburg lens with combined dielectric/metasurface for 5G communications. In: 2018 international symposium on antennas and propagation (ISAP), 2018: IEEE, pp 1–2.

  • Chen T-S (1957) Calculation of the parameters of ridge waveguides. IRE Trans Microwave Theory Tech 5(1):12–17

    Article  ADS  Google Scholar 

  • Chen KC, Yang JW, Yang Y-C, Khin CF, Kehn MNM (2017) Plasmonic Luneburg lens antenna synthesized by metasurfaces with hexagonal lattices. Opt Express 25(22):27405–27414

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chou H-T, Yan Z-D (2018) Parallel-plate Luneburg lens antenna for broadband multibeam radiation at millimeter-wave frequencies with design optimization. IEEE Trans Antennas Propag 66(11):5794–5804

    Article  ADS  Google Scholar 

  • " CST Microwave Studio." https://www.3ds.com/products-services/simulia/products/cst-studio-suite/ (accessed 2008).

  • de Pineda JD, Mitchell-Thomas RC, Hibbins AP, Sambles JR (2017) A broadband metasurface Luneburg lens for microwave surface waves. Appl Phys Lett 111(21):211603

    Article  ADS  Google Scholar 

  • Diallo C, Girard E, Legay H, Sauleau R (2017) All-metal Ku-band Luneburg lens antenna based on variable parallel plate spacing Fakir bed of nails. In: 2017 11th European Conference on Antennas and Propagation (EUCAP), IEEE, pp 1401–1404.

  • Dwivedi RP, Kommuri UK (2019) Compact high gain UWB antenna using fractal geometry and UWB-AMC. Microw Opt Technol Lett 61(3):787–793

    Article  Google Scholar 

  • Eichenberger J, Yetisir E, Ghalichechian N (2019) High-gain antipodal Vivaldi antenna with pseudoelement and notched tapered slot operating at (2.5 to 57) GHz. IEEE Trans Antennas Propag 67(7):4357–4366

    Article  ADS  Google Scholar 

  • Fan F, Cai M, Zhang J, Yan Z, Wu J (2020) Wideband low-profile Luneburg lens based on a glide-symmetric metasurface. IEEE Access 8:85698–85705

    Article  Google Scholar 

  • Hammerstad EO, Bekkadal F (1975) Microstrip Handbook. Norwegian Institute of Technology

  • Hong W et al (2017) Multibeam antenna technologies for 5G wireless communications. IEEE Trans Antennas Propag 65(12):6231–6249

    Article  ADS  Google Scholar 

  • Khan MI, Khattak MI (2020) Designing and analyzing a modern MIMO-UWB antenna with a novel stub for stop band characteristics and reduced mutual coupling. Microw Opt Technol Lett 62(10):3209–3214

    Article  Google Scholar 

  • Li X, Zhou H, Gao Z, Wang H, Lv G (2017) Metamaterial slabs covered UWB antipodal Vivaldi antenna. IEEE Antennas Wirel Propag Lett 16:2943–2946

    Article  ADS  Google Scholar 

  • Li J, Jin R, Geng J, Liang X, Wang K, Premaratne M, Zhu W (2018) Design of a broadband metasurface Luneburg lens for full-angle operation. IEEE Trans Antennas Propag 67(4):2442–2451

    Article  ADS  Google Scholar 

  • Liao Q, Fonseca NJ, Quevedo-Teruel O (2018) Compact multibeam fully metallic geodesic Luneburg lens antenna based on non-Euclidean transformation optics. IEEE Trans Antennas Propag 66(12):7383–7388

    Article  ADS  Google Scholar 

  • Lu H, Liu Z, Liu Y, Ni H, Lv X (2019) Compact air-filled Luneburg lens antennas based on almost-parallel plate waveguide loaded with equal-sized metallic posts. IEEE Trans Antennas Propag 67(11):6829–6838

    Article  ADS  Google Scholar 

  • Malik R, Singh P, Ali H, Goel T (2018) A star shaped superwide band fractal antenna for 5G applications. In: 2018 3rd International conference for convergence in technology (I2CT), IEEE, pp 1–6.

  • Manafi S, González JF, Filipovic DS (2019) Design of a perforated flat Luneburg lens antenna array for wideband millimeter-wave applications. In: 2019 13th European Conference on Antennas and Propagation (EuCAP), IEEE, pp 1–5.

  • Mohandoss S, Thipparaju RR, Reddy BNB, Palaniswamy SK, Marudappa P (2018) Fractal based ultra-wideband antenna development for wireless personal area communication applications. Aeu-Int J Electr Commun 93:95–102

    Article  Google Scholar 

  • Moosazadeh M (2019) Miniaturised antipodal Vivaldi antenna and its application for detection of void inside concrete specimens. In: Antipodal Vivaldi Antennas for Microwave Imaging of Construction Materials and Structures: Springer, pp 91–112.

  • Mousavi Z, Rezaei P (2019) Millimetre-wave beam-steering array antenna by emphasising on improvement of Butler matrix features. IET Microwaves Antennas Propag 13(9):1287–1292

    Article  Google Scholar 

  • Naser-Moghadasi M, Dadashzadeh G, Abdollahvand M, Zehforoosh Y, Virdee B (2011) Planar triangular monopole antenna with multioctave bandwidth. Microw Opt Technol Lett 53(1):10–14

    Article  Google Scholar 

  • Nayak P, Verma S, Kumar P (2021) A study of ultrawideband (uwb) antenna design for cognitive radio applications, arXiv preprint arXiv:2106.15272

  • Ojaroudi N, Mehranpour M, Ghadimi N (2014) Fan-shaped antenna with triband-notched characteristic for UWB applications. Microw Opt Technol Lett 56(10):2426–2430

    Article  Google Scholar 

  • Paul LC, Islam M (2021) A super wideband directional compact Vivaldi antenna for lower 5G and satellite applications. In: Int J Antennas Propag, 2021.

  • Pfeiffer C, Grbic A (2010) A printed, broadband Luneburg lens antenna. IEEE Trans Antennas Propag 58(9):3055–3059

    Article  ADS  Google Scholar 

  • Ramanujam P, Arumugam C, Venkatesan R, Ponnusamy M (2020) Design of compact patch antenna with enhanced gain and bandwidth for 5G mm-wave applications. IET Microwaves Antennas Propag 14(12):1455–1461

    Article  Google Scholar 

  • Razi ZM, Rezaei P (2020) A two-layer beam-steering array antenna with 4× 4 modified Butler matrix fed network for switched beam application. Int J RF Microwave Comput Aided Eng 30(2):e22028

    Article  Google Scholar 

  • Roshna T, Deepak U, Mohanan P (2015) A coplanar stripline fed compact UWB antenna. Procedia Computer Science 46:1365–1370

    Article  Google Scholar 

  • Sahnoun N, Messaoudene I, Denidni T, Benghalia A (2015) Integrated flexible UWB/NB antenna conformed on a cylindrical surface. Prog Electromagn Res Lett 55:121–128

    Article  Google Scholar 

  • Sahoo S, Mishra LP, Mohanty MN, Mishra RK (2018) Design of compact UWB monopole planar antenna with modified partial ground plane. Microw Opt Technol Lett 60(3):578–583

    Article  Google Scholar 

  • Sang L, Wu S, Liu G, Wang J, Huang W (2019) High-gain UWB Vivaldi antenna loaded with reconfigurable 3-D phase adjusting unit lens. IEEE Antennas Wirel Propag Lett 19(2):322–326

    Article  ADS  Google Scholar 

  • Smith D, Vier D, Koschny T, Soukoulis C (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71(3):036617

    Article  ADS  CAS  Google Scholar 

  • Srikar D, Anuradha S (2018) A compact super wideband antenna for wireless communications. In: 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2018: IEEE, pp 1–4.

  • Swetha A, Naidu KR (2020) Gain enhancement of an UWB antenna based on a FSS reflector for broadband applications. Prog Electromagn Res C 99:193–208

    Article  Google Scholar 

  • Tiwari RN, Singh P, Kanaujia BK (2018) Small-size scarecrow-shaped CPW and microstrip-line-fed UWB antennas. J Comput Electron 17(3):1047–1055

    Article  Google Scholar 

  • Tiwari RN, Singh P, Kanaujia BK (2019) A modified microstrip line fed compact UWB antenna for WiMAX/ISM/WLAN and wireless communications. AEU-Int J Electr Commun 104:58–65

    Article  Google Scholar 

  • Trimukhe MA, Hogade BG (2019) Design and simulation of effects corresponding to reduced conducting area using slotted meandering line for compact ultra-wideband (UWB) antenna. J Commun 14(4):318–323

    Article  Google Scholar 

  • Ullah S, Ruan C, Sadiq MS, Haq TU, He W (2020) High efficient and ultra wide band monopole antenna for microwave imaging and communication applications. Sensors 20(1):115

    Article  ADS  Google Scholar 

  • Wan X, Shen X, Luo Y, Cui TJ (2014) Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface. Laser Photonics Rev 8(5):757–765

    Article  ADS  Google Scholar 

  • Wang Y-W, Yu Z-W (2017) A novel symmetric double-slot structure for antipodal Vivaldi antenna to lower cross-polarization level. IEEE Trans Antennas Propag 65(10):5599–5604

    Article  ADS  Google Scholar 

  • Wang C, Wu J, Guo Y-X (2019) A 3-D-printed wideband circularly polarized parallel-plate Luneburg lens antenna. IEEE Trans Antennas Propag 68(6):4944–4949

    Article  ADS  Google Scholar 

  • Xue L, Fusco V (2008) Printed holey plate Luneburg lens. Microw Opt Technol Lett 50(2):378–380

    Article  Google Scholar 

  • Yang D, Liu S, Geng D (2017) A miniaturized ultra-wideband Vivaldi antenna with low cross polarization. IEEE Access 5:23352–23357

    Article  Google Scholar 

  • Yin Z, He G, Yang X-X, Gao S (2020) Miniaturized ultrawideband half-mode Vivaldi antenna based on mirror image theory. IEEE Antennas Wirel Propag Lett 19(4):695–699

    Article  ADS  Google Scholar 

  • Zhang P, Li J (2017) Compact UWB and low-RCS Vivaldi antenna using ultrathin microwave-absorbing materials. IEEE Antennas Wirel Propag Lett 16:1965–1968

    Article  ADS  Google Scholar 

  • Zhao Y et al., (2019) 2D metamaterial luneburg lens for enhancing the RCS of chipless dielectric resonator tags. In: 2019 second international workshop on mobile terahertz systems (IWMTS), IEEE, pp 1–6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Yahaghi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Also, they wish to confirm that there are no known conflicts of interest associated with this publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, V.R., Yahaghi, A. & Abiri, H. Design, Simulation, and Construction of a SWB Antenna Using a Metasurface Luneburg LENS. Iran J Sci Technol Trans Electr Eng 48, 65–75 (2024). https://doi.org/10.1007/s40998-023-00666-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-023-00666-x

Keywords

Navigation