Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Biomarker of Pulmonary Inflammatory Response in LUAD: miR-584-5p Targets RAB23 to Suppress Inflammation Induced by LPS in A549 Cells

Author(s): Enyu Yang, Yinuo Hong, Cheng Xuan, Juan Xu, Qianyun Ding, Shuo Zhao, Haihan Ye, Xiaowei Fan, Zhenggang Jiang*, Siquan Zhang* and Xianfeng Ding*

Volume 30, Issue 10, 2023

Published on: 03 November, 2023

Page: [877 - 890] Pages: 14

DOI: 10.2174/0109298665248928231018070825

Price: $65

Abstract

Background: Pulmonary inflammatory response (PIR) is one of the prognostic risk factors of lung adenocarcinoma (LUAD), with a high mortality rate.

Objectives: This study aims to investigate prognostic microRNA (miRNA) to improve clinical prognosis prediction and postoperative inflammation treatment in LUAD patients.

Methods: About 201 differentially expressed microRNAs (DE-miRNAs) in LUAD were mined by differential analysis. Univariate/multivariate Cox analyses established and validated prognostic risk miRNAs in TCGA-LUAD. KEGG and GO were used to link risk signatures and biological functions. After 48 hours of exposure to 50 ng/mL LPS, the miR-584-5p/RAB23 regulatory network was verified in qRT-PCR, Western Blotting, and the Luciferase Reporter Assay in A549 cells.

Results: MiR-584-5p and miR-101-3p were validated as riskscore correlated with LUAD patients’ 1-year survival (p < 0.001) and participate in multiple inflammation-related pathways. RAB23, a RAS oncogene, is involved in inflammatory MAPK signaling. Evidence suggests that miR-584-5p regulates inflammation in LUAD by targeting RAB23. A549 cells were transfected with the mimic and inhibitor of miR-584-5p, confirming the negative regulatory relationship between miR-584-5p and RAB23. In the A549 induced by LPS, either over-expression of miR-584-5p or knock-down of RAB23 expression decreased the expression of inflammatory factors and increased cell viability.

Conclusion: Prognostic-related risk miR-584-5p can regulate the expression of RAB23 at both the mRNA and protein levels, thereby influencing the development of a PIR in LUAD. This will have significant implications for the clinical prognosis prediction and therapy decision-making of LUAD patients with PIR.

Keywords: Pulmonary inflammatory response, lung adenocarcinoma, miR-584-5p, prognosis, RAB23, riskscore, DE-miRNAs.

« Previous
Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin., 2022, 72(5), 409-436.
[http://dx.doi.org/10.3322/caac.21731] [PMID: 35736631]
[3]
el Bayadi, S.; Ettensohn, D.B.; Yashar, J. Adult respiratory distress syndrome after limited resection of adenocarcinoma of the lung. Thorax, 1990, 45(11), 901-902.
[http://dx.doi.org/10.1136/thx.45.11.901] [PMID: 2256024]
[4]
Ginsberg, R.J.; Hill, L.D.; Eagan, R.T.; Thomas, P.; Mountain, C.F.; Deslauriers, J.; Fry, W.A.; Butz, R.O.; Goldberg, M.; Waters, P.F.; Jones, D.P.; Pairolero, P.; Rubinstein, L.; Pearson, F.G. Modern thirty-day operative mortality for surgical resections in lung cancer. J. Thorac. Cardiovasc. Surg., 1983, 86(5), 654-658.
[http://dx.doi.org/10.1016/S0022-5223(19)39080-4] [PMID: 6632940]
[5]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[6]
Zulfiqar, B.; Farooq, A.; Kanwal, S.; Asghar, K. Immunotherapy and targeted therapy for lung cancer: Current status and future perspectives. Front. Pharmacol., 2022, 13, 1035171.
[http://dx.doi.org/10.3389/fphar.2022.1035171] [PMID: 36518665]
[7]
Guo, A. Open brain gene product rab23: expression pattern in the adult mouse brain and functional characterization. J. Neurosci. Res., 2007, 3253(April), 3244-3253.
[8]
Evans, T.M.; Ferguson, C.; Wainwright, B.J.; Parton, R.G.; Wicking, C. Rab23, a negative regulator of hedgehog signaling, localizes to the plasma membrane and the endocytic pathway. Traffic, 2003, 4(12), 869-884.
[http://dx.doi.org/10.1046/j.1600-0854.2003.00141.x] [PMID: 14617350]
[9]
Kadakia, S.; Helman, S.N.; Healy, N.J.; Saman, M.; Wood-Smith, D. Carpenter syndrome. J. Craniofac. Surg., 2014, 25(5), 1653-1657.
[http://dx.doi.org/10.1097/SCS.0000000000001121] [PMID: 25162549]
[10]
Ben-Salem, S.; Begum, M.A.; Ali, B.R.; Al-Gazali, L. A novel aberrant splice site mutation in rab23 leads to an eight nucleotide deletion in the mrna and is responsible for carpenter syndrome in a consanguineous emirati family. Mol. Syndromol., 2012, 3(6), 255-261.
[http://dx.doi.org/10.1159/000345653] [PMID: 23599695]
[11]
Alessandri, J.L.; Dagoneau, N.; Laville, J.M.; Baruteau, J.; Hébert, J.C.; Cormier-Daire, V. RAB23 mutation in a large family from Comoros Islands with Carpenter syndrome. Am. J. Med. Genet. A., 2010, 152A(4), 982-986.
[http://dx.doi.org/10.1002/ajmg.a.33327] [PMID: 20358613]
[12]
Jenkins, D.; Seelow, D.; Jehee, F.S.; Perlyn, C.A.; Alonso, L.G.; Bueno, D.F.; Donnai, D.; Josifiova, D.; Mathijssen, I.M.J.; Morton, J.E.V.; Helene Ørstavik, K.; Sweeney, E.; Wall, S.A.; Marsh, J.L.; Nürnberg, P.; Rita Passos-Bueno, M.; Wilkie, A.O.M. RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am. J. Hum. Genet., 2007, 80(6), 1162-1170.
[http://dx.doi.org/10.1086/518047] [PMID: 17503333]
[13]
Jiang, Y.; Han, Y.; Sun, C.; Han, C.; Han, N.; Zhi, W.; Qiao, Q. Rab23 is overexpressed in human bladder cancer and promotes cancer cell proliferation and invasion. Tumour Biol., 2016, 37(6), 8131-8138.
[http://dx.doi.org/10.1007/s13277-015-4590-9] [PMID: 26715272]
[14]
Jian, Q.; Miao, Y.; Tang, L.; Huang, M.; Yang, Y.; Ba, W.; Liu, Y.; Chi, S.; Li, C. Rab23 promotes squamous cell carcinoma cell migration and invasion via integrin β1/Rac1 pathway. Oncotarget, 2016, 7(5), 5342-5352.
[http://dx.doi.org/10.18632/oncotarget.6701] [PMID: 26716504]
[15]
Liu, Y.; Zeng, C.; Bao, N.; Zhao, J.; Hu, Y.; Li, C.; Chi, S. Effect of Rab23 on the proliferation and apoptosis in breast cancer. Oncol. Rep., 2015, 34(4), 1835-1844.
[http://dx.doi.org/10.3892/or.2015.4152] [PMID: 26238143]
[16]
Zhang, H.H.; Zhang, Z.Y.; Che, C.L.; Mei, Y.F.; Shi, Y.Z. Array analysis for potential biomarker of gemcitabine identification in non-small cell lung cancer cell lines. Int. J. Clin. Exp. Pathol., 2013, 6(9), 1734-1746.
[PMID: 24040438]
[17]
Huang, S.; Yang, L.; An, Y.; Ma, X.; Zhang, C.; Xie, G.; Chen, Z.; Xie, J.; Zhang, H. Expression of hedgehog signaling molecules in lung cancer. Acta Histochem., 2011, 113(5), 564-569.
[http://dx.doi.org/10.1016/j.acthis.2010.06.003] [PMID: 20656337]
[18]
Hou, Q.; Wu, Y.H.; Grabsch, H.; Zhu, Y.; Leong, S.H.; Ganesan, K.; Cross, D.; Tan, L.K.; Tao, J.; Gopalakrishnan, V.; Tang, B.L.; Kon, O.L.; Tan, P. Integrative genomics identifies RAB23 as an invasion mediator gene in diffuse-type gastric cancer. Cancer Res., 2008, 68(12), 4623-4630.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5870] [PMID: 18559507]
[19]
Liu, Y.J.; Wang, Q.; Li, W.; Huang, X.H.; Zhen, M.C.; Huang, S.H.; Chen, L.Z.; Xue, L.; Zhang, H.W. Rab23 is a potential biological target for treating hepatocellular carcinoma. World J. Gastroenterol., 2007, 13(7), 1010-1017.
[http://dx.doi.org/10.3748/wjg.v13.i7.1010] [PMID: 17373734]
[20]
Nozawa, T.; Aikawa, C.; Goda, A.; Maruyama, F.; Hamada, S.; Nakagawa, I. The small GTPases Rab9A and Rab23 function at distinct steps in autophagy during Group A streptococcus infection. Cell. Microbiol., 2012, 14(8), 1149-1165.
[http://dx.doi.org/10.1111/j.1462-5822.2012.01792.x] [PMID: 22452336]
[21]
Smith, A.C.; Heo, W.D.; Braun, V.; Jiang, X.; Macrae, C.; Casanova, J.E.; Scidmore, M.A.; Grinstein, S.; Meyer, T.; Brumell, J.H. A network of Rab GTPases controls phagosome maturation and is modulated by Salmonella enterica serovar typhimurium. J. Cell Biol., 2007, 176(3), 263-268.
[http://dx.doi.org/10.1083/jcb.200611056] [PMID: 17261845]
[22]
Wei, H.; Wang, J.; Xu, Z.; Lu, Y.; Wu, X.; Zhuo, C.; Tan, C.; Tang, Q.; Pu, J. miR‐584‐5p regulates hepatocellular carcinoma cell migration and invasion through targeting KCNE2. Mol. Genet. Genomic Med., 2019, 7(6), e702.
[http://dx.doi.org/10.1002/mgg3.702] [PMID: 31044566]
[23]
Guo, T.; Zheng, C.; Wang, Z.; Zheng, X. miR 584 5p regulates migration and invasion in non small cell lung cancer cell lines through regulation of MMP 14. Mol. Med. Rep., 2019, 19(3), 1747-1752.
[http://dx.doi.org/10.3892/mmr.2019.9813] [PMID: 30628644]
[24]
Li, Q.; Li, Z.; Wei, S.; Wang, W.; Chen, Z.; Zhang, L.; Chen, L.; Li, B.; Sun, G.; Xu, J.; Li, Q.; Wang, L.; Xu, Z.; Xia, Y.; Zhang, D.; Xu, H.; Xu, Z. Overexpression of miR-584-5p inhibits proliferation and induces apoptosis by targeting WW domain-containing E3 ubiquitin protein ligase 1 in gastric cancer. J. Exp. Clin. Cancer Res., 2017, 36(1), 59.
[http://dx.doi.org/10.1186/s13046-017-0532-2] [PMID: 28431583]
[25]
Xiang, X.; Mei, H.; Qu, H.; Zhao, X.; Li, D.; Song, H.; Jiao, W.; Pu, J.; Huang, K.; Zheng, L.; Tong, Q. miRNA-584-5p exerts tumor suppressive functions in human neuroblastoma through repressing transcription of matrix metalloproteinase 14. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(9), 1743-1754.
[http://dx.doi.org/10.1016/j.bbadis.2015.06.002] [PMID: 26047679]
[26]
Shan, X.; Zhang, L.; Zhu, D.X.; Zhou, X.; Zhang, H.; Liu, Q.X.; Tang, J.W.; Wen, W.; Wang, T.S.; Zhu, W.; Liu, P. Serum microRNA expression profiling revealing potential diagnostic biomarkers for lung adenocarcinoma. Chin. Med. J. , 2020, 133(21), 2532-2542.
[http://dx.doi.org/10.1097/CM9.0000000000001100] [PMID: 32947363]
[27]
Ma, D.; Qin, Y.; Huang, C.; Chen, Y.; Han, Z.; Zhou, X.; Liu, H. Circular RNA ABCB10 promotes non-small cell lung cancer progression by increasing E2F5 expression through sponging miR-584-5p. Cell Cycle, 2020, 19(13), 1611-1620.
[http://dx.doi.org/10.1080/15384101.2020.1761617] [PMID: 32420810]
[28]
Huang, H.Y.; Lin, Y.C.D.; Cui, S.; Huang, Y.; Tang, Y.; Xu, J.; Bao, J.; Li, Y.; Wen, J.; Zuo, H.; Wang, W.; Li, J.; Ni, J.; Ruan, Y.; Li, L.; Chen, Y.; Xie, Y.; Zhu, Z.; Cai, X.; Chen, X.; Yao, L.; Chen, Y.; Luo, Y. LuXu, S.; Luo, M.; Chiu, C.M.; Ma, K.; Zhu, L.; Cheng, G.J.; Bai, C.; Chiang, Y.C.; Wang, L.; Wei, F.; Lee, T.Y.; Huang, H.D. miRTarBase update 2022: An informative resource for experimentally validated miRNA–target interactions. Nucleic Acids Res., 2022, 50(D1), D222-D230.
[http://dx.doi.org/10.1093/nar/gkab1079] [PMID: 34850920]
[29]
Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res., 2020, 48(D1), D127-D131.
[http://dx.doi.org/10.1093/nar/gkz757] [PMID: 31504780]
[30]
Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One, 2018, 13(10), e0206239.
[http://dx.doi.org/10.1371/journal.pone.0206239] [PMID: 30335862]
[31]
Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife, 2015, 4, e05005.
[http://dx.doi.org/10.7554/eLife.05005] [PMID: 26267216]
[32]
Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; Fu, X.; Liu, S.; Bo, X.; Yu, G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation, 2021, 2(3), 100141.
[http://dx.doi.org/10.1016/j.xinn.2021.100141] [PMID: 34557778]
[33]
Zhuang, J.; Cheng, G.; Huang, J.; Guo, H.; Lai, Y.; Wang, J.; Shan, Z.; Zheng, S. Rosuvastatin exerts cardioprotective effect in lipopolysaccharide-mediated injury of cardiomyocytes in an MG53-dependent manner. BMC Cardiovasc. Disord., 2022, 22(1), 69.
[http://dx.doi.org/10.1186/s12872-022-02458-3] [PMID: 35196979]
[34]
Zhang, Y.; Zhu, Y.; Gao, G.; Zhou, Z. Knockdown XIST alleviates LPS‐induced WI‐38 cell apoptosis and inflammation injury via targeting miR‐370‐3p/TLR4 in acute pneumonia. Cell Biochem. Funct., 2019, 37(5), 348-358.
[http://dx.doi.org/10.1002/cbf.3392] [PMID: 31066476]
[35]
Zhang, S.; Hong, Y.; Liu, H.; Wang, Q.; Xu, J.; Zhang, Y.; Zhao, X.; Yao, Y.; Zhou, K.; Ding, X. miR 584 and miR 146 are candidate biomarkers for acute respiratory distress syndrome. Exp. Ther. Med., 2021, 21(5), 445.
[http://dx.doi.org/10.3892/etm.2021.9873] [PMID: 33747181]
[36]
Asplund, A.; Edqvist, P.H.D.; Schwenk, J.M.; Pontén, F. Antibodies for profiling the human proteome-The Human Protein Atlas as a resource for cancer research. Proteomics, 2012, 12(13), 2067-2077.
[http://dx.doi.org/10.1002/pmic.201100504] [PMID: 22623277]
[37]
Behrens, C.; Feng, L.; Kadara, H.; Kim, H.J.; Lee, J.J.; Mehran, R.; Hong, W.K.; Lotan, R.; Wistuba, I.I. Expression of interleukin-1 receptor-associated kinase-1 in non-small cell lung carcinoma and preneoplastic lesions. Clin. Cancer Res., 2010, 16(1), 34-44.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0650] [PMID: 20028769]
[38]
Zhang, P.; Cheng, J.; Zou, S.; D’Souza, A.D.; Koff, J.L.; Lu, J.; Lee, P.J.; Krause, D.S.; Egan, M.E.; Bruscia, E.M. Pharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyper-inflammation. Nat. Commun., 2015, 6(1), 6221.
[http://dx.doi.org/10.1038/ncomms7221] [PMID: 25665524]
[39]
Donzelli, J.; Proestler, E.; Riedel, A.; Nevermann, S.; Hertel, B.; Guenther, A.; Gattenlöhner, S.; Savai, R.; Larsson, K.; Saul, M.J. Small extracellular vesicle‐derived miR‐574‐5p regulates PGE2‐biosynthesis via TLR7/8 in lung cancer. J. Extracell. Vesicles, 2021, 10(12), 12143.
[http://dx.doi.org/10.1002/jev2.12143] [PMID: 34596365]
[40]
Wang, L.; Zhang, L.F.; Wu, J.; Xu, S.J.; Xu, Y.Y.; Li, D.; Lou, J.T.; Liu, M.F. IL-1β-mediated repression of microRNA-101 is crucial for inflammation-promoted lung tumorigenesis. Cancer Res., 2014, 74(17), 4720-4730.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0960] [PMID: 24958470]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy