Skip to main content
Log in

Evaluation of the Efficiency of the Separation of Dust–Gas Flows in Uniflow Cyclones

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A model was proposed for determining the efficiency of fractional separation in a uniflow cyclone. The model includes parameters that characterize the motion of a particle in the cyclone and, hence, the degree of separation, namely, the distance that the particle travels when moving in a helical path, and this path itself. The separation efficiency in a uniflow cyclone of a new design was experimentally studied. The experiments were carried out with quartz flour of four particle size fractions: 15, 20, 30, and 50 μm. The efficiency of the cyclone in the separation of small particles was high for apparatuses of this type. The separation efficiency curves were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Meshalkin, V.P., Vvedenie v inzhiniring energoresursosberegayushchikh khimiko-tekhnologicheskikh sistem (Introduction to the Energy-Resourse-Saving Engineering of Chemical-Technological Systems), Moscow: RKhTU, 2020.

  2. Huang, L., Deng, S., Chen, Z., Guan, J., and Chen, M., Numerical analysis of a novel gas–liquid pre-separation cyclone, Sep. Purif. Technol., 2018, vol. 194, pp. 470–479. https://doi.org/10.1016/j.seppur.2017.11.066

    Article  CAS  Google Scholar 

  3. Zhang, Z.-W., Li, Q., Zhang, Y.-H., and Wang. H.-L., Simulation and experimental study of effect of vortex finder structural parameters on cyclone separator performance, Sep. Purif. Technol., 2022, vol. 286, article no. 120394. https://doi.org/10.1016/j.seppur.2021.120394

    Article  CAS  Google Scholar 

  4. Mirzaei, M., Jensen, P.A., Nakhaei, M., Wu, H., Zakrewski, S., Zhou, H., and Lin, W., A hybrid multiphase model accounting for particle agglomeration for coarse-grid simulation of dense solid flow inside large-scale cyclones, Powder Technol., 2022, vol. 399, article no. 117186. https://doi.org/10.1016/j.powtec.2022.117186

    Article  CAS  Google Scholar 

  5. Song, J., Wei, Y., Sun, G., and Chen, J., Experimental and CFD study of particle deposition on the outer surface of vortex finder of a cyclone separator, Chem. Eng. J., 2017, vol. 309, pp. 249–262. https://doi.org/10.1016/j.cej.2016.10.019

    Article  CAS  Google Scholar 

  6. Aslamova, V.S., Aslamov, A.A., Lyapustin, P.K., Museva, T.N., and Bragin, N.A., Direct-flow cyclone for the production of mineral wool, Ecol. Prom-st. Ross., 2007, no. 6, pp. 26–27.

  7. Wang, L., Liu, B., Feng, J., and Peng, X., Experimental study on the separation performance of a novel oil–gas cyclone separator, Powder Technol., 2023, vol. 415, article no. 118124. https://doi.org/10.1016/j.powtec.2022.118124

    Article  CAS  Google Scholar 

  8. An, I.-H., Lee, C.-H., Lim, J.-H., Lee, H.-Y., and Yook, S.-J., Development of a miniature cyclone separator operating at low Reynolds numbers as a pre-separator for portable black carbon monitors, Adv. Powder Technol., 2021, vol. 32, no. 12, pp. 4779–4787. https://doi.org/10.1016/j.apt.2021.10.027

    Article  CAS  Google Scholar 

  9. Yu, G., Dong, S., Yang, L., Yan, D., Dong, K., Wei, Y., and Wang, B., Experimental and numerical studies on a new double-stage tandem-nesting cyclone, Chem. Eng. Sci., 2021, vol. 236, article no. 116537. https://doi.org/10.1016/j.ces.2021.116537

    Article  CAS  Google Scholar 

  10. Turubaev, R.R. and Shvab, A.V., Numerical study of swirled flow aerodynamics in the vortex chamber of the combined pneumatic machine, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 2017, no. 47, pp. 87–98. https://doi.org/10.17223/19988621/47/9

  11. Nikolaev, A.N. and Khar’kov, V.V., Description of the profiles of the circumferential and axial velocity components in a hollow vortex apparatus, Vestn. Kazan. Tekhnol. Univ., 2016, vol. 19, no. 17, pp. 71–74.

    CAS  Google Scholar 

  12. Song, C., Pei, B., Jiang, M., Wang, B., Xu, D., and Chen, Y., Numerical analysis of forces exerted on particles in cyclone separators, Powder Technol., 2016, vol. 294, pp. 437–448. https://doi.org/10.1016/j.powtec.2016.02.052

    Article  CAS  Google Scholar 

  13. Ghasemi, S.E., Vatani, M., and Ganji, D.D., Efficient approaches of determining the motion of a spherical particle in a swirling fluid flow using weighted residual methods, Particuology. 2015, vol. 23, pp. 68–74. https://doi.org/10.1016/j.partic.2014.12.008

    Article  Google Scholar 

  14. Wan, Z., Yang, S., Tang, D., Yuan, H., Hu, J., and Wang, H., CFD-DEM investigation of gas–solid swirling flow in an industrial-scale annular pipe, Chem. Eng. J., 2023, vol. 461, article no. 141975. https://doi.org/10.1016/j.cej.2023.141975

    Article  CAS  Google Scholar 

  15. Wan, Z., Yang, S., Tang, D., Yuan, H., Hu, J., and Wang, H., Particle-scale modeling study of coaxial jets of gas–solid swirling flow in an industrial-scale annular pipe via CFD-DEM, Powder Technol., 2023, vol. 419, article no. 118307. https://doi.org/10.1016/j.powtec.2023.118307

    Article  CAS  Google Scholar 

  16. Li, W., Wu, F., Xu, L., Sun, J., and Ma, X., Numerical and experimental study on the particle erosion and gas–particle hydrodynamics in an integral multi-jet swirling spout-fluidized bed, Chin. J. Chem. Eng., 2023, article no. 159655. https://doi.org/10.1016/j.cjche.2023.03.011

  17. Ma, L., Ingham, D.B., and Wen X., Numerical modelling of the fluid and particle penetration through small sampling cyclones, J. Aerosol Sci., 2000, vol. 31, no. 9, pp. 1097–1119. https://doi.org/10.1016/S0021-8502(00)00016-1

    Article  CAS  Google Scholar 

  18. De Souza, F.J., De Vasconcelos Salvo, R., and De Moro Martins, D.A., Large eddy simulation of the gas–particle flow in cyclone separators, Sep. Purif. Technol., 2012, vol. 94, pp. 61–70. https://doi.org/10.1016/j.seppur.2012.04.006

    Article  CAS  Google Scholar 

  19. Wang, B., Xu, D.L., Chu, K.W., and Yu, A.B., Numerical study of gas–solid flow in a cyclone separator, Appl. Math. Modell., 2006, vol. 30, no. 11, pp. 1326–1342. https://doi.org/10.1016/j.apm.2006.03.011

    Article  Google Scholar 

  20. Wang, B. and Yu, A.B., Numerical study of the gas–liquid–solid flow in hydrocyclones with different configuration of vortex finder, Chem. Eng. J., 2008, vol. 135, nos. 1–2, pp. 33–42. https://doi.org/10.1016/j.cej.2007.04.009

  21. Xiaodong, L., Jianhua, Y., Yuchun, C., Mingjiang, N., and Kefa, C., Numerical simulation of the effects of turbulence intensity and boundary layer on separation efficiency in a cyclone separator, Chem. Eng. J., 2003, vol. 95, nos. 1–3, pp. 235–240. https://doi.org/10.1016/S1385-8947(03)00109-8

  22. Cui, J., Chen, X., Gong X., and Yu, G., Numerical study of gas–solid flow in a radial-inlet structure cyclone separator, Ind. Eng. Chem. Res., 2010, vol. 49, no. 11, pp. 5450–5460. doi.org/https://doi.org/10.1021/ie901962r

    Article  CAS  Google Scholar 

  23. RF Patent 195672U1, 2020.

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-79-30029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Toptalov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toptalov, V.S., Chesnokov, Y.G., Meshalkin, V.P. et al. Evaluation of the Efficiency of the Separation of Dust–Gas Flows in Uniflow Cyclones. Theor Found Chem Eng 57, 435–441 (2023). https://doi.org/10.1134/S0040579523040450

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523040450

Keywords:

Navigation