Skip to main content
Log in

Heat and Mass Transfer in Spray Drying Processes with Convective-Radiant Energy Supply

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The article presents a mathematical model, numerical simulation results, and experimental investigations of heat- and mass-transfer processes, and the operating parameters of an experimental spraying plant for dehydration of concentrated solutions with convective–radiant energy supply. The article shows that the heat- and mass-transfer processes, dryer capacity, and evaporated moisture performance can be enhanced by reducing the specific heat consumption due to the impact of infrared radiation on the liquid spray plume area and the creation of a countercurrent vertical flow mode of the coolant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Dolinskii, A.A. and Maletskaya, K.D., Raspylitel’naya sushka. Teplofizicheskie osnovy. Metody intensifikatsii i energosberezheniya (Spray Drying. Thermophysical Foundations. Methods of Intensification and Energy-Saving), Kiev: Akademperiodika, 2011, vol. 1.

  2. Handbook of Industrial Drying, Mujumdar, A.S., Ed., Boca Raton, FL: CRC Press, 2014.

    Google Scholar 

  3. Tutova, E.G. and Kuts, P.S., Sushka produktov mikrobiologicheskogo proizvodstva (Drying Products of Microbiological Manufacturing), Moscow: Agropromizdat, 1987.

  4. Kudra, T. and Mujumdar, A.S., Advanced Drying Technologies, New York: Marcel Dekker, Inc., 2002.

    Google Scholar 

  5. Akulich, P.V., Dragun, V.L., and Kuts, P.S., Tekhnologiya i tekhnika sushki (Technologies and Technique of Drying), Minsk: Belorusskaya nauka, 2006.

  6. Akulich, P.V. and Akulich, A.V., Konvektivnye sushil’nye ustanovki: metody i primery rascheta (Convective Drying Plants: Methods and Calculation Results), Minsk: Vysheishaya shkola, 2019.

  7. Modern Drying Technology. Process Intensification, Tsotsas, E. and Mujumdar, A.S., Eds., Weinheim: Wiley-VCH, 2014, vol. 5.

    Google Scholar 

  8. Wu, Z., Yue, L., Li, Z., Li, J., Mujumdar, A.S., and Rehkopf, J.A., Pulse combustion spray drying of egg white: Energy efficiency and product quality, Food Bioprocess Technol. 2015, vol. 8, no. 1, pp. 148–157. https://doi.org/10.1007/s11947-014-1384-9

    Article  Google Scholar 

  9. Wisniewski, R., Spray drying technology review, Proc. 45 th Int. Conf. Environ. Syst., Bellevue, WA: 2015, pp. 1–46.

  10. Feklunova, Yu.S., Development and scientific justification of the method of the pumpkin puree spray drying with the convective–radiation energy supply, Extended Abstract of Cand. (Eng.) Dissertation, Astrakhan’: FBGTU VPO AGTU, 2015.

  11. BY Patent 18467, 2013. Byull. Izobret., 2013, no. 2, p. 23.

  12. Akulich, P.V., Borodulya, V.A., and Slizhuk, D.S., Methods of increasing spray drying efficiency, Energoeffektivnost’, 2018, no. 4, pp. 28–32.

  13. Akulich, P.V. and Slizhuk, D.S., Thermodynamic processes in spray drying with convective-radiation energy supply, Theor. Found. Chem. Eng., 2021, vol. 55, no. 1, pp. 30–40. https://doi.org/10.1134/S0040579521010024

    Article  CAS  Google Scholar 

  14. Akulich, P.V., Heat and mass exchange of a drop of a solution subjected to a combined energy action under conditions of deepening of the evaporation zone, Inzh. Fiz. Zh., 2016, vol. 89, no. 3, p. 539.

    CAS  Google Scholar 

  15. Akulich, P.V., Simulation of heat and mass transfer of droplets in drying an overheated liquid under conditions of combined energy effect, Inzh. Fiz. Zh., 2019, vol. 92, no. 2, pp.389–397.

    CAS  Google Scholar 

  16. Prakash, S. and Sirignano, W.A., Theory of convective droplet vaporization with unsteady heat transfer in the circulating liquid phase, Int. J. Heat Mass Transfer., 1980, vol. 23, no. 3, pp. 253–268. https://doi.org/10.1016/0017-9310(80)90113-1

    Article  CAS  Google Scholar 

  17. Kozyrev, A.V. and Sitnikov, A.G., Evaporation of a spherical droplet in a moderate-pressure gas, Usp. Fiz. Nauk, 2001, vol. 171, no. 7, pp. 765–774. https://doi.org/10.3367/UFNr.0171.200107c.0765

    Article  Google Scholar 

  18. Terekhov, V.I., Terekhov, V.V., Shishkin, N.E., and Bi, K.Ch., Heat and mass transfer in disperse and porous media experimental and numerical investigations of nonstationary evaporation of liquid droplets, Inzh. Fiz. Zh., 2010, vol. 83, no. 5, p. 829.

    Google Scholar 

  19. Varghese S.K. and Gangamma, S., Evaporation of water droplets by radiation: Effect of absorbing inclusions, Aerosol Air Qual. Res., 2007, vol. 7, no. 1, pp. 95–105. https://doi.org/10.4209/aaqr.2006.11.0028

    Article  Google Scholar 

  20. Mezhericher, M., Levy, A., and Borde, I., The influence of thermal radiation on drying of single droplet/wet particle, Drying Technol., 2008, vol. 26, no. 1, pp. 78–89. https://doi.org/10.1080/07373930701781686

    Article  Google Scholar 

  21. Arkhipov, V.A., Basalaev, S.A., Zolotarev, N.N., Kuznetsov, V.T., Perfil’eva, K.G., and Usanina, A.S., Influence of the heat exchange mechanism on the evaporation dynamics of the single liquid droplet, Trudy XVI Minskogo Mezhdunarodnogo foruma po teplo- i massoobmenu (Proc. XVI Minsk Int. Heat and Mass Transfer Forum), Minsk, 2021, p. 713.

  22. Bochkareva, E.M., Ley, M.K., Terekhov, V.V., and Terekhov, V.I., Methological characteristics of an experimental investigation of the process of evaporation of suspended liquid droplets, Inzh. Fiz. Zh., 2019, vol. 92, no. 5, p.1171.

    CAS  Google Scholar 

  23. Sazhin, S.S., Rybdylova, O., Crua, C., Heikal, M., Ismael, M.A., Nissar, Z., and Aziz, A.R.B.A., A simple model for puffing/micro-explosions in water-fuel emulsion droplets, Int. J. Heat Mass Transf., 2019, vol. 131. pp. 815–821. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.065

    Article  CAS  Google Scholar 

  24. Voitkov, I.S., Volkov, R.S, Kuznetsov, G.V., and Strizhak, P.A., The high temperature evaporation of water droplets in a gaseous medium, Zh. Tekh. Fiz., 2017, vol. 87, no. 12, pp. 1911–1914. https://doi.org/10.21883/JTF.2017.12.45220.2218

    Article  Google Scholar 

  25. Terekhov, V.I. and Pakhomov, M.A., Teplomassoperenos i gidrodinamika v gazokape’nykh potokah (Heat- and Mass-Transfer and Hydrodynamics in Gas-Drop Flows), Novosibirsk: NGTU, 2009.

Download references

Funding

This work was supported by the Belarusian Republican Foundation for Fundamental Research, project no. T22-008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Akulich.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akulich, P.V., Slizhuk, D.S. Heat and Mass Transfer in Spray Drying Processes with Convective-Radiant Energy Supply. Theor Found Chem Eng 57, 459–468 (2023). https://doi.org/10.1134/S0040579523040334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523040334

Keywords:

Navigation