Skip to main content
Log in

A highly selective sensor based on p-tetranitrocalix[4]arene-capped copper nanoparticles for colorimetric and bare-eye detection of cyclophosphamide

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In the current study, one of the outstanding facile and simple protocols is proposed for the synthesis of copper nanoparticles (CuNPs) using NaBH4 as a reducing agent and p-tetranitrocalix[4]arene (p-TNC4) as a capping agent. According to our knowledge, no such technique is available in the literature for colorimetric detection of cyclophosphamide (CPA) using CuNPs at the trace level. The well-organized synthesis was confirmed via advanced spectroscopic techniques. The crystallite size, shape, phase purity, and morphological characteristics were determined via XRD, AFM, FT-IR, and UV–visible spectroscopy. At the optimal conditions for CPA detection, the sensor reveals an excellent sensitivity, selectivity, as well as stability with LOD and LOQ 20 nM and 60 nM, respectively. However, the proposed sensor showed excellent potential and selectivity for the sensing of colorimetric detection of CPA that can be effectively applied to real blood serum samples. The proposed approach is better suited as compared to reported protocols in terms of handling, simplicity, economic, energy consumption, reproducibility, and excellent performance in a very short time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. P. Bottoni, S. Caroli, Presence of residues and metabolites of pharmaceuticals in environmental compartments, food commodities and workplaces: a review spanning the three-year period 2014–2016. Microchem. J. 136, 2–24 (2018)

    Article  CAS  Google Scholar 

  2. H. Franquet-Griell, C. Gómez-Canela, F. Ventura, S. Lacorte, Anticancer drugs: consumption trends in Spain, prediction of environmental concentrations and potential risks. Environ. Pollut. 229, 505–515 (2017)

    Article  CAS  PubMed  Google Scholar 

  3. M. Isidori, M. Lavorgna, C. Russo, M. Kundi, B. Žegura, M. Novak, M. Filipič, M. Mišík, S. Knasmueller, M.L. de Alda, Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain. Environ. Pollut. 219, 275–287 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. A.C. Johnson, M.D. Jürgens, R.J. Williams, K. Kümmerer, A. Kortenkamp, J.P. Sumpter, Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study. J. Hydrol. 348, 167–175 (2008)

    Article  CAS  Google Scholar 

  5. C. Leder, T. Rastogi, K. Kümmerer, Putting benign by design into practice-novel concepts for green and sustainable pharmacy: designing green drug derivatives by non-targeted synthesis and screening for biodegradability. Sustain. Chem. Pharm. 2, 31–36 (2015)

    Article  CAS  Google Scholar 

  6. N. Negreira, M.L. de Alda, D. Barceló, Cytostatic drugs and metabolites in municipal and hospital wastewaters in Spain: filtration, occurrence, and environmental risk. Sci. Total Environ. 497, 68–77 (2014)

    Article  PubMed  Google Scholar 

  7. A. Parrella, M. Lavorgna, E. Criscuolo, C. Russo, M. Isidori, Estrogenic activity and cytotoxicity of six anticancer drugs detected in water systems. Sci. Total Environ. 485, 216–222 (2014)

    Article  PubMed  Google Scholar 

  8. C. Sottani, P. Rinaldi, E. Leoni, G. Poggi, C. Teragni, A. Delmonte, C. Minoia, Simultaneous determination of cyclophosphamide, ifosfamide, doxorubicin, epirubicin and daunorubicin in human urine using high-performance liquid chromatography/electrospray ionization tandem mass spectrometry: bioanalytical method validation. Rapid Commun. Mass Spectrom. 22, 2645–2659 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. K.R. Rai, J.F. Holland, O.J. Glidewell, V. Weinberg, K. Brunner, J. Obrecht, H.D. Preisler, I. Nawabi, D. Prager, R. Carey, Treatment of acute myelocytic leukemia: a study by cancer and leukemia group B. Blood (1981). https://doi.org/10.1182/blood.V58.6.1203.bloodjournal5861203

    Article  PubMed  Google Scholar 

  10. N. Sladek, Metabolism of oxazaphosphorines. Pharmacol. Ther. 37, 301–355 (1988)

    Article  CAS  PubMed  Google Scholar 

  11. J. Slattery, T. Kalhorn, G. McDonald, K. Lambert, C. Buckner, W. Bensinger, C. Anasetti, F. Appelbaum, Conditioning regimen-dependent disposition of cyclophosphamide and hydroxycyclophosphamide in human marrow transplantation patients. J. Clin. Oncol. 14, 1484–1494 (1996)

    Article  CAS  PubMed  Google Scholar 

  12. M. Hirst, D. Mills, S. Tse, L. Levin, D. White, Occupational exposure to cyclophosphamide. Lancet 323, 186–188 (1984)

    Article  Google Scholar 

  13. G. Singh, J. Fries, C. Williams, E. Zatarain, P. Spitz, D. Bloch, Toxicity profiles of disease modifying antirheumatic drugs in rheumatoid arthritis. J. Rheumatol. 18, 188–194 (1991)

    CAS  PubMed  Google Scholar 

  14. H.-P. Lohrmann, The problem of permanent bone marrow damage after cytotoxic drug treatment. Oncology 41, 180–184 (1984)

    Article  CAS  PubMed  Google Scholar 

  15. L. Silvertand, F. Vazvaei, P. Weigl, H. Rosing, M. Hillebrand, M. Van Maanen, J. Beijnen, Simultaneous quantification of fludarabine and cyclophosphamide in human plasma by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 19, 3673–3680 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. E. Stokvis, H. Rosing, J.H. Beijnen, Liquid chromatography-mass spectrometry for the quantitative bioanalysis of anticancer drugs. Mass Spectrom. Rev. 24, 887–917 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. I. Martins, H.V.D. Rosa, P. Apostoli, Cyclophosphamide identification in wipe test by GC-MS and solid phase extraction. Revista Brasileira de Ciências Farmacêuticas 40, 67–73 (2004)

    Article  CAS  Google Scholar 

  18. B. Huang, L. Xiao, H. Dong, X. Zhang, W. Gan, S. Mahboob, K.A. Al-Ghanim, Q. Yuan, Y. Li, Electrochemical sensing platform based on molecularly imprinted polymer decorated N, S co-doped activated graphene for ultrasensitive and selective determination of cyclophosphamide. Talanta 164, 601–607 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. Z.H. Mohamed, S.M. Amer, A.M. El-Kousasy, M. Amer, Spectrofluorimetric method for the determination of cyclophosphamide and ifosphamide. Anal. Lett. 28, 635–647 (1995)

    Article  CAS  Google Scholar 

  20. N. Sadagopan, L. Cohen, B. Roberts, W. Collard, C. Omer, Liquid chromatography–tandem mass spectrometric quantitation of cyclophosphamide and its hydroxy metabolite in plasma and tissue for determination of tissue distribution. J. Chromatogr. B Biomed. Sci. Appl. 759, 277–284 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. F. Baumann, C. Lorenz, U. Jaehde, R. Preiss, Determination of cyclophosphamide and its metabolites in human plasma by high-performance liquid chromatography–mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 729, 297–305 (1999)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Wang, B. Yan, L. Chen, SERS tags: novel optical nanoprobes for bioanalysis. Chem. Rev. 113, 1391–1428 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. J.R. Navarro, M.H. Werts, Resonant light scattering spectroscopy of gold, silver and gold–silver alloy nanoparticles and optical detection in microfluidic channels. Analyst 138, 583–592 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Sun, L. Zhang, H. Li, Chiral colorimetric recognition of amino acids based on silver nanoparticle clusters. New J. Chem. 36, 1442–1444 (2012)

    Article  CAS  Google Scholar 

  25. H. Su, L. Chen, B. Sun, S. Ai, Fluorescence detection of cyromazine using gallic acid-reduced gold nanoparticles. Sens. Actuators, B Chem. 174, 458–464 (2012)

    Article  CAS  Google Scholar 

  26. K.B. Narayanan, H.H. Park, Colorimetric detection of manganese (II) ions using gold/dopa nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131, 132–137 (2014)

    Article  CAS  Google Scholar 

  27. T. Lou, Z. Chen, Y. Wang, L. Chen, Blue-to-red colorimetric sensing strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles. ACS Appl. Mater. Interfaces. 3, 1568–1573 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. P. Miao, T. Liu, X. Li, L. Ning, J. Yin, K. Han, Highly sensitive, label-free colorimetric assay of trypsin using silver nanoparticles. Biosens. Bioelectron. 49, 20–24 (2013)

    Article  CAS  PubMed  Google Scholar 

  29. M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia, Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 111, 3669–3712 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A. Balouch, M.H. Agheem, S.A. Memon, A.R. Baloch, A. Tunio, A.H. Pato, M.S. Jagirani, P. Panah, Efficient mitigation of cadmium and lead toxicity in coriander plant utilizing magnetite nanofertilizer as growth regulator and antimicrobial agent. Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1776861

    Article  Google Scholar 

  31. A.M. Mahar, A. Balouch, F.N. Talpur, P. Panah, R. Kumar, A. Kumar, A.H. Pato, D. Mal, S. Kumar, A.A. Umar, Fabrication of Pt-Pd@ ITO grown heterogeneous nanocatalyst as efficient remediator for toxic methyl parathion in aqueous media. Environ. Sci. Pollut. Res. (2020). https://doi.org/10.1007/s11356-019-07548-y

    Article  Google Scholar 

  32. A.H. Pato, A. Balouch, F.N. Talpur, A.M. Mahar, M.T. Shah, A. Kumar, S. Qasim, A.A. Gabole, Synthesis and catalytic practicality of titania@ ITO-grown nanoflakes: an excellent candidate for isopropanol conversion to acetone. Appl. Nanosci. 10, 739–749 (2020)

    Article  CAS  Google Scholar 

  33. D. Mal, A. Balouch, A.M. Mahar, A.H. Pato, S. Kumar, S. Lal, A. Kumar, Synthesis and catalytic practicality of CeO 2 nanoparticle: an excellent heterogenous candidate for 4-nitrophenol reduction. Appl Nanosci (2020). https://doi.org/10.1007/s13204-020-01472-1

    Article  Google Scholar 

  34. S. Panhwar, J.A. Buledi, D. Mal, A.R. Solangi, A. Balouch, A. Hyder, Importance and analytical perspective of green synthetic strategies of copper, zinc, and titanium oxide nanoparticles and their applications in pathogens and environmental remediation. Curr. Anal. Chem. (2021). https://doi.org/10.2174/1573411017999201125124513

    Article  Google Scholar 

  35. Y. Zhao, J.J. Zhu, J.M. Hong, N. Bian, H.Y. Chen, Microwave-induced polyol-process synthesis of copper and copper oxide nanocrystals with controllable morphology. Eur. J. Inorg. Chem. 2004, 4072–4080 (2004)

    Article  Google Scholar 

  36. Z. Liu, Y. Bando, A novel method for preparing copper nanorods and nanowires. Adv. Mater. 15, 303–305 (2003)

    Article  CAS  Google Scholar 

  37. N.A. Dhas, C.P. Raj, A. Gedanken, Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater. 10, 1446–1452 (1998)

    Article  CAS  Google Scholar 

  38. M.-S. Yeh, Y.-S. Yang, Y.-P. Lee, H.-F. Lee, Y.-H. Yeh, C.-S. Yeh, Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-propanol. J. Phys. Chem. B 103, 6851–6857 (1999)

    Article  CAS  Google Scholar 

  39. A.H. Pato, A. Balouch, F.N. Talpur, P. Panah, A.M. Mahar, M.S. Jagirani, S. Kumar, S. Sanam, Fabrication of TiO2@ITO-grown nanocatalyst as efficient applicant for catalytic reduction of Eosin Y from aqueous media. Environ. Sci. Pollut. Res. (2020). https://doi.org/10.1007/s11356-020-10548-y

    Article  Google Scholar 

  40. B.C. Smith, A process for successful infrared spectral interpretation. 2016.

  41. M. Kachel-Jakubowska, J. Strubińska, A. Matwijczuk, M. Gagoś, Microscopic and spectroscopic analyses of selected agricultural formulations containing various nanostructures. Polish J. Environ. Stud. 26, 1565 (2017)

    Article  Google Scholar 

  42. S.K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–4862 (2007)

    Article  CAS  PubMed  Google Scholar 

  43. M. Hussain, A. Nafady, S.T.H. Sherazi, M.R. Shah, A. Alsalme, M.S. Kalhoro, S.A. Mahesar, S. Siddiqui, Cefuroxime derived copper nanoparticles and their application as a colorimetric sensor for trace level detection of picric acid. RSC Adv. 6, 82882–82889 (2016)

    Article  CAS  Google Scholar 

  44. D. Lai, T. Liu, G. Jiang, W. Chen, Synthesis of highly stable dispersions of copper nanoparticles using sodium hypophosphite. J. Appl. Polym. Sci. 128, 1443–1449 (2013)

    Article  CAS  Google Scholar 

  45. M. Vaseem, K.M. Lee, D.Y. Kim, Y.-B. Hahn, Parametric study of cost-effective synthesis of crystalline copper nanoparticles and their crystallographic characterization. Mater. Chem. Phys. 125, 334–341 (2011)

    Article  CAS  Google Scholar 

  46. C.D. Gutsche, M. Iqbal, D. Stewart, Calixarenes. 19. Syntheses procedures for p-tert-butylcalix [4] arene. J. Org. Chem. 51, 742–745 (1986)

    Article  CAS  Google Scholar 

  47. M. Abdulla-Al-Mamun, Y. Kusumoto, M. Muruganandham, Simple new synthesis of copper nanoparticles in water/acetonitrile mixed solvent and their characterization. Mater. Lett. 63, 2007–2009 (2009)

    Article  CAS  Google Scholar 

  48. C. Noguez, Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J. Phys. Chem. C 111, 3806–3819 (2007)

    Article  CAS  Google Scholar 

  49. F. Chen, N. Alemu, R.L. Johnston, Collective plasmon modes in a compositionally asymmetric nanoparticle dimer. AIP Adv. 1, 032134 (2011)

    Article  Google Scholar 

  50. B.K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, J.S. Kim, Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Coll. Interface Sci. 311, 417–424 (2007)

    Article  CAS  Google Scholar 

  51. S. De, S. Mandal, Surfactant-assisted shape control of copper nanostructures. Coll. Surf., A 421, 72–83 (2013)

    Article  CAS  Google Scholar 

  52. A. Hatamie, B. Zargar, A. Jalali, Copper nanoparticles: a new colorimetric probe for quick, naked-eye detection of sulfide ions in water samples. Talanta 121, 234–238 (2014)

    Article  CAS  PubMed  Google Scholar 

  53. I.B. Solangi, A.A. Bhatti, M.A. Kamboh, S. Memon, M. Bhanger, A convenient approach toward fluoride sorption by calix [4] arene based sorbent. Sep. Sci. Technol. 46, 1113–1120 (2011)

    Article  CAS  Google Scholar 

  54. P. Chokratanasombat, E. Nisaratanaporn, Preparation of ultrafine copper powders with controllable size via polyol process with sodium hydroxide addition. Eng. J. 16, 39–46 (2012)

    Article  Google Scholar 

  55. M. Kouti, L Matouri, Fabrication of nanosized cuprous oxide using fehling's solution. 2010

  56. A.K. Parmar, N.N. Valand, K.B. Solanki, S.K. Menon, Picric acid capped silver nanoparticles as a probe for colorimetric sensing of creatinine in human blood and cerebrospinal fluid samples. Analyst 141, 1488–1498 (2016)

    Article  CAS  PubMed  Google Scholar 

  57. S.S. Memon, A. Nafady, A.R. Solangi, A.M. Al-Enizi, M.R. Shah, S.T. Sherazi, S. Memon, M. Arain, M.I. Abro, M.I. Khattak, Sensitive and selective aggregation based colorimetric sensing of Fe3+ via interaction with acetyl salicylic acid derived gold nanoparticles. Sens. Actuators, B Chem. 259, 1006–1012 (2018)

    Article  CAS  Google Scholar 

  58. S. Santana-Viera, R. Guedes-Alonso, Z. Sosa-Ferrera, J.J. Santana-Rodríguez, A. Kabir, K.G. Furton, Optimization and application of fabric phase sorptive extraction coupled to ultra-high performance liquid chromatography tandem mass spectrometry for the determination of cytostatic drug residues in environmental waters. J. Chromatogr. A 1529, 39–49 (2017)

    Article  CAS  PubMed  Google Scholar 

  59. R. Said, Z. Hassan, M. Hassan, M. Abdel-Rehim, Rapid and sensitive method for determination of cyclophosphamide in patients plasma samples utilizing microextraction by packed sorbent online with liquid chromatography-tandem mass spectrometry (MEPS-LC-MS/MS). J. Liq. Chromatogr. Relat. Technol. 31, 683–694 (2008)

    Article  CAS  Google Scholar 

  60. P. Gopinath, S. Veluswami, R. Thangarajan, G. Gopisetty, RP-HPLC-UV method for estimation of fluorouracil–epirubicin–cyclophosphamide and their metabolite mixtures in human plasma (Matrix). J. Chromatogr. Sci. 56, 488–497 (2018)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to the Higher Education Commission of Pakistan to provide the finical support thorough the Indigenous Ph.D Fellowship 5000, Phase-II-Batch-VI and National Center of Excellence in Analytical Chemistry University of Sindh Jamshoro, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hyder.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 574 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyder, A., Memon, S.S., Buledi, J.A. et al. A highly selective sensor based on p-tetranitrocalix[4]arene-capped copper nanoparticles for colorimetric and bare-eye detection of cyclophosphamide. ANAL. SCI. 39, 1981–1992 (2023). https://doi.org/10.1007/s44211-023-00408-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00408-3

Keywords

Navigation