Skip to main content
Log in

Sensitive detection of heavy metal stress in aquatic plants by dissolved oxygen-quenched fluorescence/materials movement-induced beam deflection method

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Sensitive detection of heavy metal (HM) stress in aquatic plants by dissolved oxygen (DO)-quenched fluorescence/materials movement-induced beam deflection method is demonstrated. Egeria densa Planchon and Cu2+ were used as a model aquatic plant and HM ion, respectively. Reproducibility and experimental errors of the method were first investigated in a control culture solution only containing 10−6 M Ru (II) complex (Tris (2,2’-bipyridyl) ruthenium (II) chloride) without addition of any fertilizer and Cu2+. Changes of DO concentration (∆DO) and deflection (∆DE) during the monitoring periods were used as parameters to quantitatively evaluate the experimental errors and detection limits. Averages or means (\(\overline{\Delta DO }\), \(\overline{\Delta DE }\)) and standard deviations (σ∆DO, σ∆DE) of ∆DO and ∆DE in seven control experiments with different aquatic plants sheets during both the respiration and photosynthesis processes were obtained. Next, DO and deflection at the middle vicinities of the aquatic plant were monitored during 2 h of both respiration and photosynthesis in presence of 10–10 ~ 10–6 M Cu2+. Experimental results showed that the aquatic plant began to suffer from the HM stress in some extent in presence of 10–9 M Cu2+. When the concentration of Cu2+ was higher than 10–8 M, changing trends of both DO and deflection with time were not reversed during the respiration and photosynthesis, implying that the materials movements in the physiological activities had been altered greatly. It is demonstrated that the method could sensitively detect the HM stress in the aquatic plants given by nM HM ions in culture solution without addition of a fertilizer. Furthermore, detection limits of the method were quantitatively discussed by considering \(\overline{\Delta DO }-3\) σ∆DO and \(\overline{\Delta DE }+3\) σ∆DE as the minimum detectable changes of DO and deflection caused by the HM stress, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. R. Riyazuddin, N. Nisha, K. Singh, R. Verma, R. Gupta, Plant Cell Rep. 41, 519 (2022). https://doi.org/10.1007/s00299-021-02720-6

    Article  CAS  PubMed  Google Scholar 

  2. B. Printz, S. Lutts, J.-F. Hausman, K. Sergeant, Front. Plant Sci. 7, 1 (2016). https://doi.org/10.3389/fpls.2016.00601

    Article  Google Scholar 

  3. N.H. Ghori, T. Ghori, M.Q. Hayat, S.R. Imadi, A. Gul, V. Altay, M. Ozturk, Int. J. Environ. Sci. Technol. 16, 1807 (1807). https://doi.org/10.1007/s13762-019-02215-8

    Article  CAS  Google Scholar 

  4. Z. Zhang, M. Liu, X. Liu, G. Zhou, Sensors 18, 2172 (2012). https://doi.org/10.3390/s18072172

    Article  CAS  Google Scholar 

  5. D.K. Gupta, F.J. Corpas, J.M. Palma, Heavy metal stress in plants (Springer-Verlag, Berlin, 2013)

    Book  Google Scholar 

  6. N.G. Guanzon, H. Nakahara, Y. Yoshida, Fish Sci. 60, 379 (1994). https://doi.org/10.2331/fishsci.60.379

    Article  CAS  Google Scholar 

  7. S. Hunt, Physiol. Plant 117, 314 (2003). https://doi.org/10.1034/j.1399-3054.2003.00055.x

    Article  CAS  PubMed  Google Scholar 

  8. K. Rohacek, M. Bartak, Photosynthetica 37, 339 (1999)

    Article  CAS  Google Scholar 

  9. H. Huang, F. Ullah, D.-X. Zhou, M. Yi, Y. Zhao, Front. Plant Sci. 10, 1 (2019). https://doi.org/10.3389/fpls.2019.00035

    Article  Google Scholar 

  10. F.A. Bazzaz, R.W. Carlson, G.L. Rolfe, Environ. Pollut. 7, 241 (1974). https://doi.org/10.1016/0013-9327(74)90032-9

    Article  CAS  Google Scholar 

  11. H. Clijsters, F.V. Assche, Photosyn. Res. 1985(7), 31 (1985). https://doi.org/10.1007/BF00032920

    Article  Google Scholar 

  12. M.E. Soltan, M.N. Rashed, Adv. Environ. Res. 7, 321 (2003). https://doi.org/10.1016/S1093-0191(02)00002-3

    Article  CAS  Google Scholar 

  13. A. Giannakoula, I. Therios, C. Chatzissavvidis, Plants 10, 155 (2021). https://doi.org/10.3390/plants10010155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. X.-Z. Wu, P. Sansuku, Environ. Monit. Contam. Res. 1, 91 (2021). https://doi.org/10.5985/emcr.20210006

    Article  Google Scholar 

  15. X.-Z. Wu, X. Wu, T. Inoue, Anal. Sci. 33, 351 (2017). https://doi.org/10.2116/analsci.33.351

    Article  CAS  PubMed  Google Scholar 

  16. M. Yarrow, V.H. Marin, M. Finlayson, A. Tironi, Rev. Chil. Hist. Nat. 82(2), 299 (2009). https://doi.org/10.4067/S0716-078X2009000200010

    Article  Google Scholar 

  17. I. Yruela, Funct. Plant Biol. 36, 409 (2009). https://doi.org/10.1590/S1677-04202005000100012

    Article  CAS  PubMed  Google Scholar 

  18. W. Xing, W. Huang, G. Liu, Environ. Toxicol. 25, 103 (2010). https://doi.org/10.1002/tox.20480

    Article  CAS  PubMed  Google Scholar 

  19. X.-Z. Wu, L. Huang, Anal. Sci. 34, 1335 (2018). https://doi.org/10.2116/analsci.18N010

    Article  CAS  PubMed  Google Scholar 

  20. H.M. Kalaji, G. Schansker, R.J. Ladle, M. Zivcak et al., Photosynth. Res. 122, 121 (2014). https://doi.org/10.1007/s11120-014-0024-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. K. Maxwell, G.N. Johnson, J. Exp. Bot. 51, 659 (2000). https://doi.org/10.1093/jxb/51.345.659

    Article  CAS  PubMed  Google Scholar 

  22. R. Mehrandish, A. Rahimian, A. Shahriary, J. Herbmed. Pharmacol. 8(2), 69 (2019). https://doi.org/10.15171/jhp.2019.12

    Article  CAS  Google Scholar 

  23. D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of instrumental analysis, 5th edn. (Saunders College Publishing, Toronto, 1998)

    Google Scholar 

  24. X.-Z. Wu, M. Yamada, T. Hobo, S. Suzuki, Anal. Chem. 61, 1505 (1989). https://doi.org/10.1021/ac00189a009

    Article  CAS  Google Scholar 

  25. S. Kawakubo, H. Ogusu, M. Iwatsuki, Bunseki Kagaku 60, 579 (2011). https://doi.org/10.2116/bunsekikagaku.60.579

    Article  CAS  Google Scholar 

  26. F. Monnet, F. Bordas, V. Deluchat, M. Baudu, Chemosphere 65, 1806 (1806). https://doi.org/10.1016/j.chemosphere.2006.04.022

    Article  CAS  Google Scholar 

  27. S. Puig, N. Andres-Colas, A. Garcia-Molina, L. Peñarrubia, Plant Cell Environ. 30, 271 (2007). https://doi.org/10.1111/j.1365-3040.2007.01642.x

    Article  CAS  PubMed  Google Scholar 

  28. M. Gao, X. Chang, Y. Yang, Z. Song, Plant Physiol. Biochem. 154, 287 (2020). https://doi.org/10.1016/j.plaphy.2020.06.021

    Article  CAS  PubMed  Google Scholar 

  29. E. Yotsova, A. Dobrikova, M. Stefanov, S. Misheva, M. Bardáˇcová, I. Matušíková, L. Žideková, A. Blehová, E. Apostolova, Plant Physiol. Biochem. 155, 789 (2020). https://doi.org/10.1016/j.plaphy.2020.06.042

    Article  CAS  PubMed  Google Scholar 

  30. H. Dai, Y. Xu, L. Zhao, C. Shan, Braz. J. Bot 39, 787 (2016). https://doi.org/10.1007/s40415-016-0250-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grant-in Aid for Scientific Research (Nos. 24550109 and 20K05572) from the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Zheng Wu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XZ., Patthamawan, K. & Okuhata, Y. Sensitive detection of heavy metal stress in aquatic plants by dissolved oxygen-quenched fluorescence/materials movement-induced beam deflection method. ANAL. SCI. 39, 1993–2000 (2023). https://doi.org/10.1007/s44211-023-00412-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-023-00412-7

Keywords

Navigation