Skip to main content
Log in

Visualization and analysis of the curvature invariants in the Alcubierre warp-drive spacetime

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In the Alcubierre warp-drive spacetime, we investigate the following scalar curvature invariants: the scalar I, derived from a quadratic contraction of the Weyl tensor, the trace R of the Ricci tensor, and the quadratic r1 and cubic r2 invariants from the trace-adjusted Ricci tensor. In four-dimensional spacetime the trace-adjusted Einstein and Ricci tensors are identical, and their unadjusted traces are oppositely signed yet equal in absolute value. This allows us to express these Ricci invariants using Einstein‘s curvature tensor, facilitating a direct interpretation of the energy-momentum tensor. We present detailed plots illustrating the distribution of these invariants. Our findings underscore the requirement for four distinct layers of an anisotropic stress-energy tensor to create the warp bubble. Additionally, we delve into the Kretschmann quadratic invariant decomposition. We provide a critical analysis of the work by Mattingly et al., particularly their underrepresentation of curvature invariants in their plots by 8 to 16 orders of magnitude. A comparison is made between the spacetime curvature of the Alcubierre warp-drive and that of a Schwarzschild black hole with a mass equivalent to the planet Saturn. The paper addresses potential misconceptions about the Alcubierre warp-drive due to inaccuracies in representing spacetime curvature changes and clarifies the classification of the Alcubierre spacetime, emphasizing its distinction from class B warped product spacetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Carminati, J., McLenaghan, R.G.: Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space. J. Math. Phys. 32(11), 3135–3140 (1991). https://doi.org/10.1063/1.529470

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Harvey, A.: On the algebraic invariants of the four-dimensional Riemann tensor. Class. Quantum Gravity 7(4), 715 (1990). https://doi.org/10.1088/0264-9381/7/4/022

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Zakhary, E., Mcintosh, C.B.G.: A complete set of Riemann invariants. Gen. Relativ. Gravit. 29(5), 539–581 (1997). https://doi.org/10.1023/A:1018851201784

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cherubini, C., Bini, D., Capozziello, S., Ruffini, R.: Second order scalar invariants of the Riemann tensor: applications to black hole spacetimes. Int. J. Modern Phys. D 11(06), 827–841 (2002). https://doi.org/10.1142/S0218271802002037. arXiv:gr-qc/0302095 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Santosuosso, K., Pollney, D., Pelavas, N., Musgrave, P., Lake, K.: Invariants of the Riemann tensor for class B warped product space-times. Comput. Phys. Commun. 115(2), 381–394 (1998). https://doi.org/10.1016/S0010-4655(98)00134-9. arXiv:gr-qc/9809012 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. MacCallum, M.A.H.: Spacetime invariants and their uses (2015) arXiv:1504.06857 [gr-qc]

  7. Alcubierre, M.: The warp drive: hyper-fast travel within general relativity. Class. Quantum Gravity 11(5), 73 (1994). https://doi.org/10.1088/0264-9381/11/5/001. arXiv:gr-qc/0009013 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  8. Alcubierre, M., Lobo, F.S.N.: Warp drive basics. In: Lobo, F.S.N. (ed.) Wormholes, Warp Drives and Energy Conditions, vol. 189, pp. 257–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55182-1_11, arXiv:2103.05610

  9. Alcubierre, M.: The warp drive: hyper-fast travel within general relativity. Dimensions, Accessed: August 28, 2023 (2023). https://badge.dimensions.ai/details/id/pub.1023591548

  10. Hiscock, W.A.: Quantum effects in the Alcubierre warp-drive spacetime. Class. Quantum Gravity 14(11), 183 (1997). https://doi.org/10.1088/0264-9381/14/11/002. arXiv:gr-qc/9707024 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. González-Díaz, P.F.: Warp drive space-time. Phys. Rev. D 62, 044005 (2000). https://doi.org/10.1103/PhysRevD.62.044005. arXiv:gr-qc/9907026 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  12. Clark, C., Hiscock, W.A., Larson, S.L.: Null geodesics in the Alcubierre warp-drive spacetime: the view from the bridge. Class. Quantum Gravity 16(12), 3965 (1999). https://doi.org/10.1088/0264-9381/16/12/313. arXiv:gr-qc/9907019 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Lobo, F.S.N., Visser, M.: Fundamental limitations on ‘warp drive’ spacetimes. Class. Quantum Gravity 21(24), 5871 (2004). https://doi.org/10.1088/0264-9381/21/24/011. arXiv:gr-qc/0406083 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Santiago, J., Schuster, S., Visser, M.: Generic warp drives violate the null energy condition. Phys. Rev. D 105, 064038 (2022). https://doi.org/10.1103/PhysRevD.105.064038. arXiv:2105.03079 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  15. Olum, K.D.: Superluminal travel requires negative energies. Phys. Rev. Lett. 81, 3567–3570 (1998). https://doi.org/10.1103/PhysRevLett.81.3567. arXiv:gr-qc/9805003 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Pfenning, M.J., Ford, L.H.: The unphysical nature of ‘warp drive’. Class. Quantum Gravity 14(7), 1743 (1997). https://doi.org/10.1088/0264-9381/14/7/011. arXiv:gr-qc/9702026 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Lentz, E.W.: Breaking the warp barrier: hyper-fast solitons in Einstein-Maxwell-plasma theory. Class. Quantum Gravity 38(7), 075015 (2021). https://doi.org/10.1088/1361-6382/abe692. arXiv:2006.07125 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Fell, S.D.B., Heisenberg, L.: Positive energy warp drive from hidden geometric structures. Class. Quantum Gravity 38(15), 155020 (2021). https://doi.org/10.1088/1361-6382/ac0e47. arXiv:2104.06488 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Broeck, C.V.D.: A ‘warp drive’ with more reasonable total energy requirements. Class. Quantum Gravity 16(12), 3973 (1999). https://doi.org/10.1088/0264-9381/16/12/314. arXiv:gr-qc/9905084 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Mattingly, B., Kar, A., Gorban, M., Julius, W., Watson, C.K., Ali, M., Baas, A., Elmore, C., Lee, J.S., Shakerin, B., Davis, E.W., Cleaver, G.B.: Curvature invariants for the Alcubierre and Natário warp drives. Universe 7(2), (2021). https://doi.org/10.3390/universe7020021. arXiv:2010.13693 [gr-qc]

  21. Andrews, B., Hopper, C.: The Ricci Flow in Riemannian geometry: a complete proof of the differentiable 1/4-pinching sphere theorem. Lecture Notes in Mathematics, pp. 63–65. Springer, Berlin Heidelberg (2010). https://books.google.com/books?id=wx5uCQAAQBAJ

  22. Herrera, L., Di Prisco, A., Martin, J., Ospino, J., Santos, N.O., Troconis, O.: Spherically symmetric dissipative anisotropic fluids: a general study. Phys. Rev. D 69, 084026 (2004). https://doi.org/10.1103/PhysRevD.69.084026. arXiv:gr-qc/0403006 [gr-qc]

    Article  ADS  Google Scholar 

  23. Abellán, G., Bolivar, N., Vasilev, I.: Alcubierre warp drive in spherical coordinates with some matter configurations. Eur. Phys. J. C 83(1), 7 (2023). https://doi.org/10.1140/epjc/s10052-022-11091-5. arXiv:2305.03736 [gr-qc]

    Article  ADS  Google Scholar 

  24. Abellán, G., Bolivar, N., Vasilev, I.: Influence of anisotropic matter on the Alcubierre metric and other related metrics: revisiting the problem of negative energy. Gen. Relativ. Gravit. 55(4), 60 (2023). https://doi.org/10.1007/s10714-023-03105-8. arXiv:2305.03736 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Santos-Pereira, O.L., Abreu, E.M.C., Ribeiro, M.B.: Charged dust solutions for the warp drive spacetime. Gen. Relativ. Gravit. 53(2), 23 (2021). https://doi.org/10.1007/s10714-021-02799-y. arXiv:2102.05119 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Santos-Pereira, O.L., Abreu, E.M.C., Ribeiro, M.B.: Perfect fluid warp drive solutions with the cosmological constant. Eur. Phys. J. Plus 136(9), 902 (2021). https://doi.org/10.1140/epjp/s13360-021-01899-7. arXiv:2108.10960 [gr-qc]

    Article  Google Scholar 

  27. Santos-Pereira, O.L., Abreu, E.M.C., Ribeiro, M.B.: Dust content solutions for the Alcubierre warp drive spacetime. Eur. Phys. J. C 80(8), 786 (2020). https://doi.org/10.1140/epjc/s10052-020-8355-2. arXiv:2008.06560 [gr-qc]

    Article  ADS  Google Scholar 

  28. Santos-Pereira, O.L., Abreu, E.M.C., Ribeiro, M.B.: Fluid dynamics in the warp drive spacetime geometry. Eur. Phys. J. C 81(2), 133 (2021). https://doi.org/10.1140/epjc/s10052-021-08921-3. arXiv:2101.11467 [gr-qc]

    Article  ADS  Google Scholar 

  29. Santos-Pereira, O.L., Abreu, E.M.C., Ribeiro, M.B.: Warp drive dynamic solutions considering different fluid sources. In: R. Ruffini, G.V. (ed.) The Sixteenth Marcel Grossmann Meeting, pp. 840–855. World Scientific Publishing, New Jersey (2023). https://doi.org/10.1142/9789811269776_0066. arXiv:2111.01298

  30. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1973). Section 4.1. https://doi.org/10.1017/CBO9780511524646

  31. Carot, J., Costa, J.: On the geometry of warped spacetimes. Class. Quantum Gravity 10(3), 461–482 (1993). https://doi.org/10.1088/0264-9381/10/3/007, p. 467

  32. Carot, J., Núñez, L.A.: Hydrodynamics in type B warped spacetimes. Phys. Rev. D 72, 084005 (2005). https://doi.org/10.1103/PhysRevD.72.084005. arXiv:gr-qc/0507066 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  33. Ozsváth, I., Schücking, E.L.: The finite rotating universe. Ann. Phys. 55(1), 166–204 (1969). https://doi.org/10.1016/0003-4916(69)90311-X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Ralph, T.C., Chang, C.: Spinning up a time machine. Phys. Rev. D 102, 124013 (2020). https://doi.org/10.1103/PhysRevD.102.124013. arXiv:2007.14627 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  35. Carneiro, F.L., Ulhoa, S.C., Maluf, J.W., Rocha-Neto, J.F.: On the total energy conservation of the Alcubierre spacetime. J.Cosmol.Astropart. Phys. 2022(07), 030 (2022). https://doi.org/10.1088/1475-7516/2022/07/030arXiv:2201.05684 [gr-qc]. Section III, p. 7

  36. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/CBO9780511535185

  37. Hofmann, S., Niedermann, F., Schneider, R.: Interpretation of the Weyl tensor. Phys. Rev. D 88, 064047 (2013). https://doi.org/10.1103/PhysRevD.88.064047. arXiv:1308.0010 [gr-qc]

    Article  ADS  Google Scholar 

  38. Bini, D., Geralico, A., Jantzen, R.T.: Petrov type I spacetime curvature: principal null vector spanning dimension. Int. J. Geometric Methods Modern Phys. 20(05), 2350087 (2023). https://doi.org/10.1142/S0219887823500871. arXiv:2111.01283 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  39. Baak, S.-S., Datta, S., Fischer, U.R.: Petrov classification of analogue spacetimes. Class. Quantum Gravity 40(21), 215001 (2023). https://doi.org/10.1088/1361-6382/acf08e. arXiv:2305.12771 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. White, H.G.: A discussion of space-time metric engineering. Gen. Relativ Gravit. 35(11), (2003). https://doi.org/10.1023/A:1026247026218

  41. White, H.G.: Warp field mechanics 101. J. Br. Interplanet. Soc. 66, 242–247 (2011). https://ntrs.nasa.gov/citations/20110015936

  42. White, H.G.: Warp field mechanics 102: energy optimization, Eagleworks Laboratories. Nasa Technical Reports Service Document NTRS-ID-20130011213, NASA (2013). https://ntrs.nasa.gov/citations/20130011213

  43. Bobrick, A., Martire, G.: Introducing physical warp drives. Class. Quantum Gravity 38(10), 105009 (2021). https://doi.org/10.1088/1361-6382/abdf6e. arXiv:2102.06824 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Sarfatti, J.: 3+1 ADM warp drive inside meta-material fuselage (2021). https://www.academia.edu/44956634/3_1_ADM_Warp_Drive_Inside_Meta_Material_Tic

  45. Wolfram Research, I.: Mathematica®. Version 13.2.0.0, 100 Trade Center Drive, Champaign, IL 61820-7237 (2022). https://www.wolfram.com/mathematica/

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

J.R. conceived the study, conducted the research, analyzed the data, wrote the main manuscript text, and prepared all figures. J.R. also reviewed and approved the final version of the manuscript for submission.

Corresponding author

Correspondence to José Rodal.

Ethics declarations

Conflict of interest

The author has no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Curvature invariants of the Alcubierre metric

Appendix A: Curvature invariants of the Alcubierre metric

$$\begin{aligned} f_r= & {} \frac{\tanh {[\sigma (\sqrt{(x-x_{0}(t))^2+y^2+z^2}+\rho )}]-\tanh {[\sigma (\sqrt{(x-x_{0}(t))^2+y^2+z^2}-\rho )}]}{2\tanh {[\sigma \rho ]}} \nonumber \\ \end{aligned}$$
(A1)
$$\begin{aligned} v_s= & {} \frac{\partial x_{0}(t)}{\partial t} \end{aligned}$$
(A2)
$$\begin{aligned} G= & {} -\frac{1}{2} v_s \left( v_s \left( \frac{\partial f_r}{\partial z}^2+\frac{\partial f_r}{\partial y}^2+4 \left( \frac{\partial f_r}{\partial x}^2+f_r \frac{\partial ^2 f_r}{\partial x^2}\right) \right) +4 \frac{\partial ^2 f_r}{\partial t \partial x}\right) \end{aligned}$$
(A3)
$$\begin{aligned} r_1= & {} \frac{1}{16} v_s^2 \left( 11 v_s^2 \frac{\partial f_r}{\partial z}^4+11 v_s^2 \frac{\partial f_r}{\partial y}^4+8 \left( 2 v_s^2 \frac{\partial f_r}{\partial x}^4+v_s^2 f_r^2 \left( \frac{\partial ^2 f_r}{\partial x \partial z}^2\right. \right. \right. \nonumber \\{} & {} \left. +\frac{\partial ^2 f_r}{\partial x \partial y}^2+ 2 \frac{\partial ^2 f_r}{\partial x^2}^2\right) +4 v_s \frac{\partial f_r}{\partial x}^2 \left( v_s f_r \frac{\partial ^2 f_r}{\partial x^2}+\frac{\partial ^2 f_r}{\partial t \partial x}\right) \nonumber \\{} & {} +2 v_s f_r \left( \frac{\partial ^2 f_r}{\partial x \partial z} \frac{\partial ^2 f_r}{\partial t \partial z}+\frac{\partial ^2 f_r}{\partial x \partial y} \frac{\partial ^2 f_r}{\partial t \partial y}+2 \frac{\partial ^2 f_r}{\partial x^2} \frac{\partial ^2 f_r}{\partial t \partial x}\right) \nonumber \\{} & {} \left. -\frac{\partial ^2 f_r}{\partial x \partial z}^2-\frac{\partial ^2 f_r}{\partial x \partial y}^2+\frac{\partial ^2 f_r}{\partial t \partial z}^2+\frac{\partial ^2 f_r}{\partial t \partial y}^2+2 \frac{\partial ^2 f_r}{\partial t \partial x}^2\right) \\{} & {} + 2 v_s \frac{\partial f_r}{\partial z}^2 \left( 11 v_s \frac{\partial f_r}{\partial y}^2-4 \left( -3 v_s \frac{\partial f_r}{\partial x}^2+v_s f_r \frac{\partial ^2 f_r}{\partial x^2}+\frac{\partial ^2 f_r}{\partial t \partial x}\right) \right) \nonumber \\{} & {} +32 v_s \frac{\partial f_r}{\partial x} \frac{\partial f_r}{\partial z} \left( v_s f_r \frac{\partial ^2 f_r}{\partial x \partial z}+\frac{\partial ^2 f_r}{\partial t \partial z}\right) + 32 v_s \frac{\partial f_r}{\partial y} \frac{\partial f_r}{\partial x} \left( v_s f_r \frac{\partial ^2 f_r}{\partial x \partial y}+\frac{\partial ^2 f_r}{\partial t \partial y}\right) \nonumber \\{} & {} \left. -8 v_s \frac{\partial f_r}{\partial y}^2 \left( -3 v_s \frac{\partial f_r}{\partial x}^2+v_s f_r \frac{\partial ^2 f_r}{\partial x^2}+\frac{\partial ^2 f_r}{\partial t \partial x}\right) -8 \left( \frac{\partial ^2 f_r}{\partial z^2}+\frac{\partial ^2 f_r}{\partial y^2}\right) ^2\right) \nonumber \end{aligned}$$
(A4)
$$\begin{aligned} I{} & {} =\frac{1}{3} v_s^2 \left( 4 v_s^2 \frac{\partial f_r}{\partial z}^4+4 v_s^2 \frac{\partial f_r}{\partial y}^4+4 v_s^2 \frac{\partial f_r}{\partial x}^4+3 v_s^2 f_r^2 \frac{\partial ^2 f_r}{\partial x \partial z}^2+3 v_s^2 f_r^2 \frac{\partial ^2 f_r}{\partial x \partial y}^2\right. \nonumber \\{} & {} \quad + 4 v_s^2 f_r^2 \frac{\partial ^2 f_r}{\partial x^2}^2+8 v_s^2 f_r \frac{\partial f_r}{\partial x}^2 \frac{\partial ^2 f_r}{\partial x^2}\nonumber \\{} & {} \quad +4 v_s \frac{\partial f_r}{\partial z}^2 \left( 2 v_s \left( \frac{\partial f_r}{\partial y}^2+ \frac{\partial f_r}{\partial x}^2\right) -v_s f_r \frac{\partial ^2 f_r}{\partial x^2}-\frac{\partial ^2 f_r}{\partial t \partial x}\right) \nonumber \\{} & {} \quad +12 v_s \frac{\partial f_r}{\partial x} \frac{\partial f_r}{\partial z} \left( v_s f_r \frac{\partial ^2 f_r}{\partial x \partial z}+\frac{\partial ^2 f_r}{\partial t \partial z}\right) +6 v_s f_r \frac{\partial ^2 f_r}{\partial x \partial z} \frac{\partial ^2 f_r}{\partial t \partial z}+6 v_s f_r \frac{\partial ^2 f_r}{\partial x \partial y} \frac{\partial ^2 f_r}{\partial t \partial y}\nonumber \\{} & {} \quad + 12 v_s \frac{\partial f_r}{\partial y} \frac{\partial f_r}{\partial x} \left( v_s f_r \frac{\partial ^2 f_r}{\partial x \partial y}+\frac{\partial ^2 f_r}{\partial t \partial y}\right) \nonumber \\{} & {} \quad +4 v_s \frac{\partial f_r}{\partial y}^2 \left( 2 v_s \frac{\partial f_r}{\partial x}^2-v_s f_r \frac{\partial ^2 f_r}{\partial x^2}-\frac{\partial ^2 f_r}{\partial t \partial x}\right) \nonumber \\{} & {} \quad + 8 v_s \left( \frac{\partial f_r}{\partial x}^2+f_r \frac{\partial ^2 f_r}{\partial x^2}\right) \frac{\partial ^2 f_r}{\partial t \partial x}+3 \frac{\partial ^2 f_r}{\partial t \partial z}^2+3 \frac{\partial ^2 f_r}{\partial t \partial y}^2+4 \frac{\partial ^2 f_r}{\partial t \partial x}^2\nonumber \\{} & {} \quad \left. -3 \left( 4 \frac{\partial ^2 f_r}{\partial y \partial z}^2+\left( \frac{\partial ^2 f_r}{\partial z^2}-\frac{\partial ^2 f_r}{\partial y^2}\right) ^2\right) -3 \left( \frac{\partial ^2 f_r}{\partial x \partial z}^2+\frac{\partial ^2 f_r}{\partial x \partial y}^2\right) \right) \end{aligned}$$
(A5)
$$\begin{aligned} r_2= & {} -\frac{3}{64} v_s^3 \left( 3 v_s^3 \frac{\partial f_r}{\partial z}^6+v_s^2 \left( 9 v_s \frac{\partial f_r}{\partial y}^2+4 v_s \frac{\partial f_r}{\partial x}^2-12 \left( v_s f_r \frac{\partial ^2 f_r}{\partial x^2}+\frac{\partial ^2 f_r}{\partial t \partial x}\right) \right) \frac{\partial f_r}{\partial z}^4\right. \\{} & {} + 16 v_s^2 \frac{\partial f_r}{\partial x} \left( v_s f_r \frac{\partial ^2 f_r}{\partial x \partial z}+\frac{\partial ^2 f_r}{\partial t \partial z}\right) \frac{\partial f_r}{\partial z}^3+v_s \left( 9 v_s^2 \frac{\partial f_r}{\partial y}^4+8 v_s \left( v_s \frac{\partial f_r}{\partial x}^2\right. \right. \\{} & {} \left. - 3 \left( v_s f_r \frac{\partial ^2 f_r}{\partial x^2}+\frac{\partial ^2 f_r}{\partial t \partial x}\right) \right) \frac{\partial f_r}{\partial y}^2+16 v_s \frac{\partial f_r}{\partial x} (v_s f_r \frac{\partial ^2 f_r}{\partial x \partial y}+\frac{\partial ^2 f_r}{\partial t \partial y}) \frac{\partial f_r}{\partial y}\\{} & {} - 4 \left( \frac{\partial ^2 f_r}{\partial z^2}+\frac{\partial ^2 f_r}{\partial y^2}\right) ^2+4 \left( (v_s^2 f_r^2+3) \frac{\partial ^2 f_r}{\partial x \partial z}^2 +2 v_s f_r \frac{\partial ^2 f_r}{\partial t \partial z} \frac{\partial ^2 f_r}{\partial x \partial z}+\frac{\partial ^2 f_r}{\partial x \partial y}^2+\frac{\partial ^2 f_r}{\partial t \partial z}^2\right. \\{} & {} +\left. \left. 3 \left( v_s f_r \frac{\partial ^2 f_r}{\partial x \partial y}+\frac{\partial ^2 f_r}{\partial t \partial y}\right) ^2\right) \right) \frac{\partial f_r}{\partial z}^2+16 v_s \left( -v_s^2 \frac{\partial f_r}{\partial y} \frac{\partial ^2 f_r}{\partial x \partial z} \frac{\partial ^2 f_r}{\partial x \partial y} f_r^2\right. \\{} & {} + v_s \frac{\partial f_r}{\partial y} \left( \frac{\partial ^2 f_r}{\partial x \partial z} \left( v_s \frac{\partial f_r}{\partial y} \frac{\partial f_r}{\partial x}-\frac{\partial ^2 f_r}{\partial t \partial y}\right) -\frac{\partial ^2 f_r}{\partial x \partial y} \frac{\partial ^2 f_r}{\partial t \partial z}\right) f_r-2 \frac{\partial ^2 f_r}{\partial z^2} \frac{\partial f_r}{\partial x} \frac{\partial ^2 f_r}{\partial x \partial z}\\{} & {} \left. -2 \frac{\partial ^2 f_r}{\partial y^2} \frac{\partial f_r}{\partial x} \frac{\partial ^2 f_r}{\partial x \partial z}+ \frac{\partial f_r}{\partial y} \frac{\partial ^2 f_r}{\partial x \partial z} \frac{\partial ^2 f_r}{\partial x \partial y}+v_s \frac{\partial f_r}{\partial y}^2 \frac{\partial f_r}{\partial x} \frac{\partial ^2 f_r}{\partial t \partial z}- \frac{\partial f_r}{\partial y} \frac{\partial ^2 f_r}{\partial t \partial z} \frac{\partial ^2 f_r}{\partial t \partial y}\right) \frac{\partial f_r}{\partial z}\\{} & {} +3 v_s^3 \frac{\partial f_r}{\partial y}^6-4 v_s \frac{\partial f_r}{\partial y}^2 \frac{\partial ^2 f_r}{\partial y^2}^2+4 v_s^3 \frac{\partial f_r}{\partial y}^4 \frac{\partial f_r}{\partial x}^2+16 v_s \frac{\partial ^2 f_r}{\partial y^2}^2 \frac{\partial f_r}{\partial x}^2\\{} & {} + 12 v_s^3 f_r^2 \frac{\partial f_r}{\partial y}^2 \frac{\partial ^2 f_r}{\partial x \partial z}^2+4 v_s \frac{\partial f_r}{\partial y}^2 \frac{\partial ^2 f_r}{\partial x \partial z}^2-16 v_s f_r \frac{\partial ^2 f_r}{\partial y^2} \frac{\partial ^2 f_r}{\partial x \partial z}^2\\{} & {} +4 v_s^3 f_r^2 \frac{\partial f_r}{\partial y}^2 \frac{\partial ^2 f_r}{\partial x \partial y}^2 +12 v_s \frac{\partial f_r}{\partial y}^2 \frac{\partial ^2 f_r}{\partial x \partial y}^2-16 v_s f_r \frac{\partial ^2 f_r}{\partial y^2} \frac{\partial ^2 f_r}{\partial x \partial y}^2\\{} & {} +12 v_s \frac{\partial f_r}{\partial y}^2 \frac{\partial ^2 f_r}{\partial t \partial z}^2+4 v_s \frac{\partial f_r}{\partial y}^2 \frac{\partial ^2 f_r}{\partial t \partial y}^2\\{} & {} +16 v_s^3 f_r \frac{\partial f_r}{\partial y}^3 \frac{\partial f_r}{\partial x} \frac{\partial ^2 f_r}{\partial x \partial y}-32 v_s \frac{\partial f_r}{\partial y} \frac{\partial ^2 f_r}{\partial y^2} \frac{\partial f_r}{\partial x} \frac{\partial ^2 f_r}{\partial x \partial y}-12 v_s^3 f_r \frac{\partial f_r}{\partial y}^4 \frac{\partial ^2 f_r}{\partial x^2}\\{} & {} + 16 v_s f_r \frac{\partial ^2 f_r}{\partial y^2}^2 \frac{\partial ^2 f_r}{\partial x^2}+24 v_s^2 f_r \frac{\partial f_r}{\partial y}^2 \frac{\partial ^2 f_r}{\partial x \partial z} \frac{\partial ^2 f_r}{\partial t \partial z}-16 \frac{\partial ^2 f_r}{\partial y^2} \frac{\partial ^2 f_r}{\partial x \partial z} \frac{\partial ^2 f_r}{\partial t \partial z}\\ \end{aligned}$$
$$\begin{aligned} \begin{aligned}&\quad +16 v_s^2 \frac{\partial f_r}{\partial y}^3 \frac{\partial f_r}{\partial x} \frac{\partial ^2 f_r}{\partial t \partial y}+8 v_s^2 f_r \frac{\partial f_r}{\partial y}^2 \frac{\partial ^2 f_r}{\partial x \partial y} \frac{\partial ^2 f_r}{\partial t \partial y}-16 \frac{\partial ^2 f_r}{\partial y^2} \frac{\partial ^2 f_r}{\partial x \partial y} \frac{\partial ^2 f_r}{\partial t \partial y}\\&\quad + 4 \left( 4 \frac{\partial ^2 f_r}{\partial y^2}^2-3 v_s^2 \frac{\partial f_r}{\partial y}^4\right) \frac{\partial ^2 f_r}{\partial t \partial x}\\&\quad +4 \frac{\partial ^2 f_r}{\partial z^2}^2 \left( 4 \left( v_s \frac{\partial f_r}{\partial x}^2+v_s f_r \frac{\partial ^2 f_r}{\partial x^2}+\frac{\partial ^2 f_r}{\partial t \partial x}\right) -v_s \frac{\partial f_r}{\partial y}^2\right) \\&\quad -8 \frac{\partial ^2 f_r}{\partial z^2} \left( v_s \frac{\partial ^2 f_r}{\partial y^2} \frac{\partial f_r}{\partial y}^2+4 v_s \frac{\partial f_r}{\partial x} \frac{\partial ^2 f_r}{\partial x \partial y} \frac{\partial f_r}{\partial y}+2 \left( v_s f_r \left( \frac{\partial ^2 f_r}{\partial x \partial z}^2+\frac{\partial ^2 f_r}{\partial x \partial y}^2\right) \right. \right. \\&\quad +\left. \left. \left. \frac{\partial ^2 f_r}{\partial x \partial z} \frac{\partial ^2 f_r}{\partial t \partial z}+\frac{\partial ^2 f_r}{\partial x \partial y} \frac{\partial ^2 f_r}{\partial t \partial y}-2 \frac{\partial ^2 f_r}{\partial y^2} \left( v_s \frac{\partial f_r}{\partial x}^2+v_s f_r \frac{\partial ^2 f_r}{\partial x^2}+\frac{\partial ^2 f_r}{\partial t \partial x}\right) \right) \right) \right) \end{aligned} \end{aligned}$$
(A6)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodal, J. Visualization and analysis of the curvature invariants in the Alcubierre warp-drive spacetime. Gen Relativ Gravit 55, 134 (2023). https://doi.org/10.1007/s10714-023-03182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03182-9

Keywords

Navigation