Skip to main content
Log in

Stackelberg Game Approach to Mixed Stochastic \(H_{2}/H_{\infty }\) Control for Mean-Field Jump-Diffusions Systems

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper, we address the mixed stochastic \(H_{2}/H_{\infty }\) control problem for a mean-field jump-diffusion system, where the state equation is influenced by both a standard Brownian motion and a Poisson random martingale measure. The control input is treated as a leader, while the disturbance is considered a follower, employing the Stackelberg game approach. Our paper makes the following key contributions: (i) Initially, we treat the \(H_{\infty }\) problem as the follower problem. Utilizing the stochastic maximum principle, we obtain the optimal open-loop solution for the follower and derive an explicit feedback representation of the optimal control, associated with the follower problem. This feedback representation is obtained through coupled Riccati differential equations (CRDEs) using the Four-Step Scheme. (ii) Subsequently, we address the \(H_{2}\) problem as the leader problem. By applying the convex variational method, we establish the mean-field stochastic maximum principle. However, due to technical complexities related to the jump process, we consider two distinct situations. In both cases, we introduce new state variables and effectively employ the Four-Step Scheme to obtain the explicit feedback representation of the optimal control for the leader problem. (iii) We demonstrate that the open-loop Stackelberg equilibrium point can be characterized by a feedback representation, which incorporates both the state and its expected value. (iv) To enhance the practicality of our model, we present an example of a PA problem involving moral hazard, illustrating the corresponding optimal contract and optimal strategy. Therefore with our proposed methodologies and solutions, we contribute valuable insights into the mixed stochastic \(H_{2}/H_{\infty }\) control problem for mean-field jump-diffusion systems. And our findings offer significant implications for understanding and addressing such complex control problems in various real-world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Frankowska, H., Quincampoix, M.: Dissipative control systems and disturbance attenuation for nonlinear \(H_{\infty }\) problems. Appl. Math. Optim. 40(2), 163–181 (1999)

    Article  MathSciNet  Google Scholar 

  2. da Ponte, C.R., Assunção, E., Minhoto Teixeira, M.C.: \(H_{2}/H_{\infty }\) formulation of LQR controls based on LMI for continuous-time uncertain systems. Int. J. Syst. Sci. 52(3), 612–634 (2021)

    Article  Google Scholar 

  3. Scherer, C., Gahinet, P., Chilali, M.: Multiobjective output-feedback control via LMI optimization. IEEE Trans. Automat. Control 42(7), 896–911 (1997)

    Article  MathSciNet  Google Scholar 

  4. Haddad, W.M., Lanchares, M., Chen, Y.: Mixed norm \(H_{2}/H_{\infty }\) and entropy covariance control: a convex optimisation approach. Int. J. Control 95(4), 985–995 (2022)

    Article  Google Scholar 

  5. Rotea, M., Khargonekar, P.: Mixed \(H_{2}/H_{\infty }\) control: A convex optimization approach. IEEE Trans. Automat. Control 36(5), 824–837 (1991)

    MathSciNet  Google Scholar 

  6. Limebeer, D.J.N., Anderson, B.D.O., Hendel, B.: A Nash game approach to mixed \(H_{2}/H_{\infty }\) control. IEEE Trans. Automat. Control 39(1), 69–82 (1994)

    Article  MathSciNet  Google Scholar 

  7. Zhang, W., Xie, L., Chen, B.S.: Stochastic \(H_{2}/H_{\infty }\) control: A Nash game approach. CRC Press, Boca Raton, FL (2017)

    Book  Google Scholar 

  8. Jungers, M., Trélat, E., Abou-Kandil, H.: A Stackelberg game approach to mixed \(H_{2}/H_{\infty }\) control. IFAC Proceedings Vol. 41(2), 3940–3945 (2008)

    Article  Google Scholar 

  9. Xie, T., Feng, X., Huang, J.: Mixed Linear Quadratic Stochastic Differential Leader-Follower Game with Input Constraint. Appl. Math. Optim. 84(1), 215–251 (2021)

    Article  MathSciNet  Google Scholar 

  10. Chen, B., Zhang, W.: Stochastic \(H_{2}/H_{\infty }\) control with state-dependent noise. IEEE Trans. Automat. Control 49(1), 45–57 (2004)

    Article  MathSciNet  Google Scholar 

  11. Zhang, W., Zhang, H., Chen, B.S.: Stochastic \(H_{2}/H_{\infty }\) control with (x, u, v)-dependent noise: Finite horizon case. Automatica 42(11), 1891–1898 (2006)

    Article  MathSciNet  Google Scholar 

  12. Zhang, W., Huang, Y., Zhang, H.: Stochastic \(H_{2}/H_{\infty }\) control for discrete-time systems with state and disturbance dependent noise. Automatica 43(3), 513–521 (2007)

    Article  MathSciNet  Google Scholar 

  13. Zhang, W., Huang, Y., Xie, L.: Infinite horizon stochastic \(H_{2}/H_{\infty }\) control for discrete-time systems with state and disturbance dependent noise. Automatica 44(9), 2306–2316 (2008)

    Article  MathSciNet  Google Scholar 

  14. Wu, K.N., Guo, B., Zhang, W., et al.: Mixed \(H_{2}/H_{\infty }\) control for linear infinite-dimensional systems. Int. J. Control Automat. Syst. 14(1), 128–139 (2016)

    Article  Google Scholar 

  15. Von Stackelberg, H., Von, S.H.: The theory of the market economy. Oxford University Press, Oxford (1952)

    Google Scholar 

  16. Chen, C.I., Cruz, J.B., Jr.: Stackelburg solution for two-person games with biased information patterns. IEEE Trans. Automat. Control 17(6), 791–798 (1972)

    Article  Google Scholar 

  17. Simaan, M., Cruz, J.B., Jr.: On the Stackelberg strategy in nonzero-sum games. J. Optim. Theo. Appl. 11(5), 533–555 (1973)

    Article  MathSciNet  Google Scholar 

  18. Abou-Kandil, H., Bertrand, P.: Analytical solution for an open-loop Stackelberg game. IEEE Trans. Automat. Control 30(12), 1222–1224 (1985)

    Article  MathSciNet  Google Scholar 

  19. Freiling, G., Jank, G., Lee, S.R.: Existence and uniqueness of open-loop Stackelberg equilibria in linear-quadratic differential games. J. Optim. Theo. Appl. 110(3), 515–544 (2001)

    Article  MathSciNet  Google Scholar 

  20. Yong, J.: A leader-follower stochastic linear quadratic differential game. SIAM J. Control Optim. 41(4), 1015–1041 (2002)

    Article  MathSciNet  Google Scholar 

  21. Lin, Y., Jiang, X., Zhang, W.: An open-loop Stackelberg strategy for the linear quadratic mean-field stochastic differential game. IEEE Trans. Automat. Control 64(1), 97–110 (2018)

    Article  MathSciNet  Google Scholar 

  22. Moon, J., Basar, T.: Linear quadratic mean field Stackelberg differential games. Automatica 97, 200–213 (2018)

    Article  MathSciNet  Google Scholar 

  23. Moon, J.: Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Math. Control & Related Fields 12(2), 371 (2022)

    Article  MathSciNet  Google Scholar 

  24. Bagchi, A., Basar, T.: Stackelberg strategies in linear-quadratic stochastic differential games. J. Optim. Theo. Appl. 35(3), 443–464 (1981)

    Article  MathSciNet  Google Scholar 

  25. Zhu, H.N., Zhang, C.K., Sun, P.H., et al.: A Stackelberg game approach to mixed \(H_{2}/H_{\infty }\) robust control for singular bilinear systems[C]//Advanced Materials Research. Trans. Tech. Publ. Ltd. 204, 1839–1847 (2011)

    Google Scholar 

  26. Mukaidani, H.: \(H_{2}/H_{\infty }\) control of stochastic systems with multiple decision makers: A Stackelberg game approach[C]//52nd IEEE Conference on Decision and Control. IEEE (2013): 1750–1755

  27. Mukaidani, H., Tanabata, R., Matsumoto, C.: Dynamic game approach of \(H_{2}/H_{\infty }\) control for stochastic discrete-time systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 97(11), 2200–2211 (2014)

  28. Mukaidani, H.: Stackelberg strategy for discrete-time stochastic system and its application to \(H_{2}/H_{\infty }\) control[C]//2014 American Control Conference. IEEE 4488–4493 (2014)

  29. Li, X., Wang, W., Xu, J., et al.: Stackelberg game approach to mixed \(H_{2}/H_{\infty }\) problem for continuous-time system. J. Syst. Sci. Complex 32(5), 1324–1339 (2019)

    Article  MathSciNet  Google Scholar 

  30. Shen, Y., Meng, Q., Shi, P.: Maximum principle for mean-field jump-diffusion stochastic delay differential equations and its application to finance. Automatica 50(6), 1565–1579 (2014)

    Article  MathSciNet  Google Scholar 

  31. Yong, J.: Linear-quadratic optimal control problems for mean-field stochastic differential equations. SIAM J. Control Optim. 51(4), 2809–2838 (2013)

    Article  MathSciNet  Google Scholar 

  32. Elliott, R., Li, X., Ni, Y.H.: Discrete time mean-field stochastic linear-quadratic optimal control problems. Automatica 49(11), 3222–3233 (2013)

    Article  MathSciNet  Google Scholar 

  33. Ni, Y.H., Li, X., Zhang, J.F.: Indefinite mean-field stochastic linear-quadratic optimal control: from finite horizon to infinite horizon. IEEE Trans. Automat. Control 61(11), 3269–3284 (2015)

    Article  MathSciNet  Google Scholar 

  34. Huang, J., Li, X., Yong, J.: A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Math. Control Relat. Fields 5(1), 97 (2015)

    Article  MathSciNet  Google Scholar 

  35. Meng, Q., Dong, Y., Shen, Y., et al.: Optimal Controls of Stochastic Differential Equations with Jumps and Random Coefficients: Stochastic Hamilton-Jacobi-Bellman Equations with Jumps. Appl. Math. Optim. 87(1), 1–51 (2023)

    Article  MathSciNet  Google Scholar 

  36. Boel, R., Varaiya, P.: Optimal control of jump processes. SIAM J. Control Optim. 15(1), 92–119 (1977)

    Article  MathSciNet  Google Scholar 

  37. Meng, Q., Shen, Y.: Optimal control of mean-field jump-diffusion systems with delay: A stochastic maximum principle approach. J. Comput. Appl. Math. 279, 13–30 (2015)

    Article  MathSciNet  Google Scholar 

  38. Yang, Y., Tang, M., Meng, Q.: A mean-field stochastic linear-quadratic optimal control problem with jumps under partial information. ESAIM: Control Optim. Calc. Var. 28, 53 (2022)

    MathSciNet  Google Scholar 

  39. Shen, Y., Siu, T.K.: The maximum principle for a jump-diffusion mean-field model and its application to the mean-variance problem. Nonlinear Anal. Theo. Methods Appl. 86, 58–73 (2013)

    Article  MathSciNet  Google Scholar 

  40. Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  41. Cvitanic, J., Zhang, J.: Contract theory in continuous-time models. Springer Science & Business Media, Germany (2012)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxin Meng.

Ethics declarations

Conflict of Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Q. Meng was supported by the Key Projects of Natural Science Foundation of Zhejiang Province (No. Z22A013952) and the National Natural Science Foundation of China (No. 12271158 and No. 11871121).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhang, W. & Meng, Q. Stackelberg Game Approach to Mixed Stochastic \(H_{2}/H_{\infty }\) Control for Mean-Field Jump-Diffusions Systems. Appl Math Optim 89, 6 (2024). https://doi.org/10.1007/s00245-023-10074-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-023-10074-6

Keywords

Navigation